Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (7): 1997-2008.doi: 10.13229/j.cnki.jdxbgxb.20221217

Previous Articles    

Calculation method and influencing factors of surface displacement during construction of curved shield tunnel

Guo-lin YANG1(),Yi-fan YANG1,Hao-dong XU1,Gui-jun LUO2,Hong-bo XIAO2   

  1. 1.School of Civil Engineering,Central South University,Changsha 410075,China
    2.Civil Engineering Co. Ltd. of China Construction Fifth Engineering Bureau,Changsha 410041,China
  • Received:2022-09-19 Online:2024-07-01 Published:2024-08-05

Abstract:

To analyze the variation law and influencing factors of surface displacement during the construction of curved shield tunnel. The mechanical model of curved shield tunnel excavation considering active articulated mechanism is established, and the calculation methods of surface displacement caused by additional stress and ground loss based on mirror method and orifice expansion theory are deduced respectively. Based on the actual project, the corresponding monitoring test and numerical simulation are carried out, the sensitivity index affecting the surface displacement offset of curved shield was researched. The results show that: The surface displacement of the curved section is offset to the inside of the tunnel in the direction of tunnel excavation, and the maximum displacement value and offset value of the curved section obtained by the calculation method are basically consistent with the measured values. It is found that the sensitivity of the imbalance coefficient is the highest, while the turning radius and excavation radius are sensitive in the curve over-digging gap factor. It is recommended that the thrust difference and over-excavation range of the inner and outer cylinders should be reasonably controlled in the construction of the curve section.

Key words: shield tunnel, surface displacement, calculation method, curve over-digging gap, sensitivity

CLC Number: 

  • TU456.3

Fig.1

Curved shield excavation mechanical model considering actively articulated structures"

Fig.2

Schematic diagram of Mindlin solution afterspatial generalization"

Fig.3

Schematic diagram of calculation of additionalstresses on excavation surface"

Fig.4

Schematic diagram of curve excavation transformations"

Fig.5

Schematic diagram of calculation of frictionbetween shield shell and soil"

Fig.6

Schematic diagram of grouting pressure calculation"

Fig.7

Schematic diagram of spherical expansion"

Fig.8

Schematic diagram of calculation of tail loss"

Fig.9

Schematic diagram of overbreak in innerdirection of turning"

Fig.10

Numerical analysis model diagram"

Fig.11

Numerical analysis results of surface displacement displacement of curved shield tunnel"

Fig.12

Curves of surface displacement"

Table 1

Statistics of maximum displacement and offset"

名称实测值Peck方法有限元法本文方法
最大位移/mm13.0713.8914.4713.25
偏差比例/6.27%10.71%1.38%
偏移值/m311.253
偏差比例/66.67%58.330

Fig.13

Sensitivity of offset values of construction parameter"

1 梁宁慧,兰菲,庄炀,等. 城市地下综合管廊建设现状与存在问题[J]. 地下空间与工程学报,2020,16(6):1622-1635.
Liang Ning-hui, Lan Fei, Zhuang Yang, et al. Current situation and existing problems of urban utility tunnel construction[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(6): 1622-1635.
2 雷升祥,申艳军,肖清华,等. 城市地下空间开发利用现状及未来发展理念[J]. 地下空间与工程学报,2019,15(4):965-979.
Lei Sheng-xiang, Shen Yan-jun, Xiao Qing-hua, et al. Present situations of development and utilization for underground space in cities and new viewpoints for future development[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(4): 965-979.
3 魏纲,徐日庆. 软土隧道盾构法施工引起的纵向地面变形预测[J]. 岩土工程学报,2005,27(9):1077-1081.
Wei Gang, Xu Ri-qing. Prediction of longitudinal ground deformation due to tunnel construction with shield in soft soil[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(9): 1077-1081.
4 魏纲,张世民,齐静静,等. 盾构隧道施工引起的地面变形计算方法研究[J]. 岩石力学与工程学报,2006,25():3317-3323.
Wei Gang, Zhang Shi-min, Qi Jing-jing, et al. Study on calculation method of ground deformation induced by shield tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(Sup. 1): 3317-3323.
5 唐晓武,朱季,刘维,等. 盾构施工过程中的土体变形研究[J]. 岩石力学与工程学报,2010,29(2):417-422.
Tang Xiao-wu, Zhu Ji, Liu Wei, et al. Research on soil deformation during shield construction process[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 417-422.
6 卢海林,赵志民,方芃,等. 盾构法隧道施工引起土体位移与应力的镜像分析方法[J]. 岩土力学,2007,28(1): 45-50.
Lu Hai-lin, Zhao Zhi-min, Fang Peng, et al. Analytical method of image theory used to calculate shield tunneling induced soil displacements and stresses[J]. Rock and Soil Mechanics, 2007, 28(1): 45-50.
7 宫亚峰,王博,魏海斌, 等. 基于Peck公式的双线盾构隧道地表沉降规律[J]. 吉林大学学报:工学版,2018,48(5):1411-1417.
Gong Ya-feng, Wang Bo, Wei Hai-bin, et al. Surface subsidence law of double-line shield tunnel based on Peck formula[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(5): 1411-1417.
8 魏风冉,祝彦知,纠永志. 基于Mindlin解的盾构隧道地表沉降黏弹性分析[J]. 应用力学学报,2020,37(1):216-224, 483.
Wei Feng-ran, Zhu Yan-zhi, Yong-zhi Jiu. Viscoelastic analysis of ground surface settlement of shield tunnel based on Mindlin solution[J]. Chinese Journal of Applied Mechanics, 2020, 37(1): 216-224, 483.
9 方勇,杨斌,杨志浩,等. 地铁盾构隧道施工对地层扰动的影响因素分析[J]. 重庆交通大学学报:自然科学版,2014,33(1):36-41.
Fang Yong, Yang Bin, Yang Zhi-hao, et al. Influence of metro shield tunnel construction on ground disturbance[J]. Journal of Chongqing Jiaotong University(Natural Science), 2014, 33(1): 36-41.
10 刘招伟,王梦恕,董新平. 地铁隧道盾构法施工引起的地表沉降分析[J]. 岩石力学与工程学报,2003,22(8):1297-1301.
Liu Zhao-wei, Wang Meng-shu, Dong Xin-ping. Analysis on ground surface subsidence of metro tunnel induced by shield construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(8): 1297-1301.
11 朱才辉,李宁. 隧道施工诱发地表沉降估算方法及其规律分析[J]. 岩土力学,2016,37():533-542.
Zhu Cai-hui, Li Ning. Estimation method and laws analysis of surface settlement due to tunneling[J]. Rock and Soil Mechanics, 2016, 37(Sup.2): 533-542.
12 潘泓,苏文渊,翟国林,等. 小曲率半径转弯隧道盾构施工扰动实测分析[J]. 岩石力学与工程学报,2017,36(4):1024-1031.
Pan Hong, Su Wen-yuan, Zhai Guo-lin, et al. Soil disturbance induced by shield advancing through a small radius path[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4): 1024-1031.
13 孙捷城,路林海,王国富,等. 小半径曲线盾构隧道掘进施工地表变形计算[J]. 中国铁道科学,2019,40(5):63-72.
Sun Jie-cheng, Lu Lin-hai, Wang Guo-fu, et al. Calculation method of surface deformation induced by small radius curve shield tunneling construction[J]. China Railway Science, 2019, 40(5): 63-72.
14 邓皇适,傅鹤林,史越. 小转弯半径曲线盾构隧道开挖引发地表沉降计算[J]. 岩土工程学报,2021,43(1): 165-173.
Deng Huang-shi, Fu He-lin, Shi Yue. Calculation of surface settlement caused by excavation of shield tunnels with small turning radius[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 165-173.
15 Mindlin R D. Force at a point in the interior of a semi-infinite solid[J]. Physics, 1936, 7(5): 195-201.
16 Sagaseta C. Analysis of undrained soil deformation due to ground loss[J]. Geotechnique, 1987, 37(3):301-320.
17 Lee K M, Rowe R K, Lo K Y. Subsidence owing to tunneling, I: estimating the gap parameter[J]. Canadian Geotechnical Journal, 1992, 6(29): 929-940.
18 张冠茂. 多重复化高斯—勒让德积分公式及其应用[J]. 兰州大学学报:自然科学版,2000,36(5):30-34.
Zhang Guan-mao. Multiple-complex-gauss-legendre integral formulae and application[J]. Journal of Lanzhou University(Natural Sciences), 2000, 36(5): 30-34.
19 郝晓龙. 小半径曲线地铁盾构施工地面沉降分析[D].石家庄: 石家庄铁道大学土木工程学院, 2020.
Hao Xiao-long. Ground settlement of small radius curve subway induced by shield construction[D]. Shijiazhuang:School of Civil Engineering, Shijiazhuang Tiedao University, 2020.
20 刘松,佘敦先,张利平,等. 基于Morris和Sobol的水文模型参数敏感性分析[J].长江流域资源与环境, 2019, 28(6):1296-1303.
Liu Song, She Dun-xian, Zhang Li-ping, et al. Global sensitivity analysis of hydrological model parameters based on morris and sobol methods[J]. Resources and Environment in the Yangtze Basin, 2019, 28(6): 1296-1303.
[1] Cheng CHEN,Pei-xin SHI,Peng-jiao JIA,Man-man DONG. Correlation analysis of shield driving parameters and structural deformation prediction based on MK-LSTM algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1624-1633.
[2] Han-hui HUANG,Kang-ming CHEN,Qing-xiong WU. Flexural behavior of composite continuous girders with concrete-filled steel tubular truss chords [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1665-1676.
[3] Xian-zhen HUANG,Kai-bo SUN,Xiao-gang LUAN,Bing HU. Reliability sensitivity analysis of bolt pre-tightening connection [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2219-2226.
[4] Zhi-qiang HAN,Gang XIE,Yong-jun ZHOU,Shi-zhong LIU,Min-jie JIN. Numerical analysis method of vehicle⁃bridge coupling vibration of curved bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 515-522.
[5] Xu CHEN,Chao-fei CAO,Jing SHANG,Ming-xing HUANG,Chang-fa AI,Dong-ya Ren. Evaluation of influence of gradation segregation on pavement moisture damage under action of dynamic and static water environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 210-219.
[6] Zi-rong YANG,Yan LI,Xue-feng JI,Fang LIU,Dong HAO. Sensitivity analysis of operating parameters for proton exchange membrane fuel cells [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1971-1981.
[7] Zi-ling ZHANG,Xiong HU,Yin QI,Wei WANG,Zhi-qiang TAO,Zhi-feng LIU. An approach for error allocation of machine tool based on vector projection response surface method [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 384-391.
[8] Yu-xuan WEI,Ming ZHANG,Jia LIU,Shuo LIU,Ming-yu LU,Hong-yu WANG. Buckling performance of variable stiffness composite cylindrical shells based on mode imperfections [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 91-100.
[9] Xue-zhi YAN,Zi-ting WANG,Xin WANG. Analysis of relationship between baseline length and error transfer in ultrasonic 3D positioning system [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1461-1469.
[10] Min-da REN,Lin CONG,Si-lin SUN,Han-qing FENG. Experiment of performance evolution of asphalt mixtures under multiple pore water pressure cycles [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1277-1286.
[11] Kai MA,Bang-hui LI,Kun YANG,Qiao-ling LIU. First and second⁃order sensitivity method of structure static displacement [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 472-477.
[12] Yang WANG,Zhan⁃shuai SONG,Kong⁃hui GUO,Ye ZHUANG. Measurement of inertial parameters of rotating inertia rig [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1795-1801.
[13] Yi JIA,Ren-da ZHAO,Yong-bao WANG,Fu-hai LI. Sensitivity analysis of viscous damper parameters for multi⁃span and long⁃unit continuous girder bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1871-1883.
[14] CHEN Dong-hui, LYU Jian-hua, LONG Gang, ZHANG Yu-chen, CHANG Zhi-yong. Static rollover stability of semi-mounted agricultural machinery based on ADAMS [J]. 吉林大学学报(工学版), 2018, 48(4): 1176-1183.
[15] LIU Yun, KANG Bing, HOU Tao, WANG Ke, LIU Fu. Optimal initialization-based C-means method [J]. 吉林大学学报(工学版), 2018, 48(1): 306-311.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!