1 |
SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2020[J].CA Cancer J Clin,2020,70(1): 7-30.
|
2 |
FENG X D, ZHANG Z J, SUN P, et al. Interleukin-18 is a prognostic marker and plays a tumor suppressive role in colon cancer[J]. Dis Markers, 2020, 2020: 6439614.
|
3 |
ANGELESCU R, DOBRESCU R. MIDGET: Detecting differential gene expression on microarray data[J]. Comput Methods Programs Biomed,2021, 211: 106418.
|
4 |
WANG Y H, ZHAO Y, BOLLAS A, et al. Nanopore sequencing technology, bioinformatics and applications[J].Nat Biotechnol,2021,39(11):1348-1365.
|
5 |
CZECH L, HUERTA-CEPAS J, STAMATAKIS A. A critical review on the use of support values in tree viewers and bioinformatics toolkits[J]. Mol Biol Evol, 2017, 34(6): 1535-1542.
|
6 |
MA J Y, CHEN X C, LIN M Q, et al. Bioinformatics analysis combined with experiments predicts CENPK as a potential prognostic factor for lung adenocarcinoma[J]. Cancer Cell Int, 2021, 21(1): 65.
|
7 |
WANG Y C, TIAN Z B, TANG X Q. Bioinformatics screening of biomarkers related to liver cancer[J]. BMC Bioinformatics, 2021, 22(): 521.
|
8 |
赵昕辉, 刘 俊, 贺奋飞, 等. 基于生物信息学分析的结肠癌枢纽基因筛选及调控网络构建[J]. 现代肿瘤医学, 2019, 27(13): 2227-2231.
|
9 |
DIBOUN I, WERNISCH L, ORENGO C A, et al. Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma[J]. BMC Genomics, 2006, 7: 252.
|
10 |
ROBINSON M D, MCCARTHY D J, SMYTH G K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2010, 26(1): 139-140.
|
11 |
ITO K, MURPHY D. Application of ggplot2 to pharmacometric graphics[J]. CPT Pharmacometrics Syst Pharmacol, 2013, 2(10): e79.
|
12 |
LANGFELDER P, HORVATH S. WGCNA: an R package for weighted correlation network analysis[J]. BMC Bioinformatics, 2008, 9: 559.
|
13 |
YOUNG A, WHITEHOUSE N, CHO J, et al. OntologyTraverser: An R package for GO analysis[J]. Bioinformatics, 2005, 21(2): 275-276.
|
14 |
KANEHISA M, GOTO S, FURUMICHI M, et al. KEGG for representation and analysis of molecular networks involving diseases and drugs[J]. Nucleic Acids Res, 2010, 38(Database issue): D355-D360.
|
15 |
STEENWYK J L, ROKAS A. Ggpubfigs: colorblind-friendly color palettes and ggplot2 graphic system extensions for publication-quality scientific figures[J]. Microbiol Resour Announc, 2021, 10(44): e0087121.
|
16 |
ZHOU L N, DING L Y, GONG Y Q, et al. Identification of hub genes associated with the pathogenesis of diffuse large B-cell lymphoma subtype one characterized by host response via integrated bioinformatic analyses[J]. Peer J, 2020, 8: e10269.
|
17 |
LIU Z C, LIU X L, CAI R, et al. Identification of a tumor microenvironment-associated prognostic gene signature in bladder cancer by integrated bioinformatic analysis[J].Int J Clin Exp Pathol,2021,14(5): 551-566.
|
18 |
WANG Y, LUO H, CAO J, et al. Bioinformatic identification of neuroblastoma microenvironment-associated biomarkers with prognostic value[J].J Oncol, 2020, 2020: 5943014.
|
19 |
LIU Q, LU W B, YANG C X, et al. HBXIP activates the PPARδ/NF-κB feedback loop resulting in cell proliferation[J]. Oncotarget, 2018, 9(1): 404-417.
|
20 |
LIU Q, DENG J Z, YANG C X, et al. DPEP1 promotes the proliferation of colon cancer cells via the DPEP1/MYC feedback loop regulation[J]. Biochem Biophys Res Commun, 2020, 532(4): 520-527.
|
21 |
WANG Y, YANG C X, LI W J, et al. Identification of colon tumor marker NKD1 via integrated bioinformatics analysis and experimental validation[J]. Cancer Med, 2021, 10(20): 7383-7394.
|
22 |
STANCIKOVA J, KRAUSOVA M, KOLAR M, et al. NKD1 marks intestinal and liver tumors linked to aberrant Wnt signaling[J]. Cell Signal, 2015, 27(2): 245-256.
|
23 |
CAO B P, YANG W L, JIN Y S, et al. Silencing NKD2 by promoter region hypermethylation promotes esophageal cancer progression by activating Wnt signaling[J]. J Thorac Oncol, 2016, 11(11): 1912-1926.
|
24 |
BERNKOPF D B, BRÜCKNER M, HADJIHANNAS M V,et al. An aggregon in conductin/axin2 regulates Wnt/β-catenin signaling and holds potential for cancer therapy[J]. Nat Commun, 2019, 10(1): 4251.
|
25 |
KING D J, FREIMANIS G, LASECKA-DYKES L, et al. A systematic evaluation of high-throughput sequencing approaches to identify low-frequency single nucleotide variants in viral populations[J]. Viruses, 2020, 12(10): 1187.
|
26 |
LIU H Y, ZHANG C J. Identification of differentially expressed genes and their upstream regulators in colorectal cancer[J]. Cancer Gene Ther, 2017, 24(6): 244-250.
|
27 |
HESARI A, RAJAB S, REZAEI M, et al. Knockdown of Sal-like 4 expression by siRNA induces apoptosis in colorectal cancer[J]. J Cell Biochem, 2019: 2019Feb16.
|
28 |
GUO J H, CAGATAY T, ZHOU G J, et al. Mutations in the human naked cuticle homolog NKD1 found in colorectal cancer alter Wnt/Dvl/beta-catenin signaling[J]. PLoS One, 2009, 4(11): e7982.
|
29 |
CHEN H Y, LANG Y D, LIN H N, et al. miR-103/107 prolong Wnt/β-catenin signaling and colorectal cancer stemness by targeting Axin2[J]. Sci Rep, 2019, 9: 9687.
|
30 |
TIENG F Y F, ABU N, SUKOR S, et al. L1CAM, CA9, KLK6, HPN, and ALDH1A1 as potential serum markers in primary and metastatic colorectal cancer screening[J]. Diagnostics (Basel), 2020, 10(7): 444.
|
31 |
CUBAS R, ZHANG S, LI M, et al. Trop2 expression contributes to tumor pathogenesis by activating the ERK MAPK pathway[J]. Mol Cancer, 2010, 9: 253.
|
32 |
VELOUDIS G, PAPPAS A, GOURGIOTIS S, et al. Assessing the clinical utility of Wnt pathway markers in colorectal cancer[J]. J BUON, 2017, 22(2): 431-436.
|
33 |
OTERO L, LACUNZA E, VASQUEZ V, et al. Variations in AXIN2 predict risk and prognosis of colorectal cancer[J]. B D J Open, 2019, 5: 13.
|