1 |
ZAVATTARO M, CAPUTO M, SAMA M T, et al. One-year treatment with liraglutide improved renal function in patients with type 2 diabetes: a pilot prospective study[J]. Endocrine, 2015, 50(3):620-626.
|
2 |
DE LUCAS M D G, BUENO B A, SIERRA J O. Liraglutide preserves renal function in overweight diabetic patients with stage 3 chronic kidney disease[J]. Euro J Int Med,2017, 44:e28-e29.
|
3 |
KRISTENSEN S L, RØRTH R, JHUND P S, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials[J]. Lancet Diabetes Endocrinol, 2019, 7(10):776-785.
|
4 |
KAWANAMI D, TAKASHI Y. GLP-1 receptor agonists in diabetic kidney disease: from clinical outcomes to mechanisms[J]. Front Pharmacol, 2020, 11:967.
|
5 |
ZHANG S S, WU Z, ZHANG Z,et al. Glucagon-like peptide-1 inhibits the receptor for advanced glycation endproducts to prevent podocyte apoptosis induced by advanced oxidative protein products[J]. Biochem Biophys Res Commun, 2017, 482(4):1413-1419.
|
6 |
SHI J X, HUANG Q. Glucagonlike peptide1 protects mouse podocytes against high glucoseinduced apoptosis, and suppresses reactive oxygen species production and proinflammatory cytokine secretion,through sirtuin 1 activation in vitro[J]. Mol Med Rep, 2018, 18(2): 1789-1797.
|
7 |
CHEN P, SHI X Z,XU X, et al. Liraglutide ameliorates early renal injury by the activation of renal FoxO1 in a type 2 diabetic kidney disease rat model[J]. Diabetes Res Clin Pract, 2018, 137:173-182.
|
8 |
SIDDIQI F S, MAJUMDER S, THAI K, et al. The histone methyltransferase enzyme enhancer of zeste homolog 2 protects against podocyte oxidative stress and renal injury in diabetes[J]. J Am Soc Nephrol, 2016,27(7):2021-2034.
|
9 |
CARNEY E F. Cholesterol and podocyte injury[J]. Nat Rev Nephrol, 2013, 9(9):493-493.
|
10 |
TANG S C W, YIU W H. Innate immunity in diabetic kidney disease[J]. Nat Rev Nephrol, 2020,16(4):206-222.
|
11 |
HARALOSSON B,NYSTROÖM J,DEEN W M. Properties of the glomerular barrier and mechanisms of proteinuria[ J ]. Physiol Rev, 2008, 88(2):451-487.
|
12 |
SCHIFFER T A, FRIEDERICH-PERSSON M. Mitochondrial reactive oxygen species and kidney hypoxia in the development of diabetic nephropathy[J]. Front Physiol, 2017, 8:211.
|
13 |
UMANATH K, LEWIS J B. Update on diabetic nephropathy: core curriculum 2018[ J ]. Am J Kidney Dis, 2018, 71(6):884-895.
|
14 |
LI X, CHUANG PY, D’AGATI V D, et al. Nephrin preserves podocyte viability and glomerular structure and function in adult kidneys[J]. J Am Soc Nephrol, 2015, 26(10):2361-2377.
|
15 |
SAGAR A, ARIF E, SOLANKI A K, et al. Targeting Neph1 and ZO-1 protein-protein interaction in podocytes prevents podocyte injury and preserves glomerular filtration function[J]. Sci Rep, 2017, 7(1):12047.
|
16 |
KOSTOVSKA I, TOSHESKA-TRAJKOVSKA K, LABUDOVIK D, et al. Nephrin and podocalyxin-markers for early detection of hypertensive nephropathy [J]. Atherosclerosis Suppl, 2018, 32:132.
|
17 |
PONCHIARDI C, MAUER M, NAJAFIAN B. Temporal profile of diabetic nephropathy pathologic changes[J]. Curr Diab Rep, 2013, 13:592-599.
|
18 |
IMASAWA T, OBRE E, BELLANCE N, et al. High glucose repatterns human podocyte energy metabolism during differentiation and diabetic nephropathy[J]. Faseb J, 2017, 31(1):294-307.
|
19 |
WEIL E J, LEMLEY K V, MASON C C, et al. Podocyte detachment and reduced glomerular capillary endothelial fenestration promote kidney disease in type 2 diabetic nephropathy[J]. Kidney Int, 2012, 82(9):1010-1017.
|
20 |
SHARMA R, MCDONALD T S, ENG H, et al. In vitro metabolism of the glucagon-like peptide-1 (GLP-1)-derived metabolites GLP-1(9-36)amide and GLP-1(28-36)amide in mouse and human hepatocytes[J]. Drug Metab Dispos, 2013,41(12):2148-2157.
|
21 |
MANN J F E, ORSTED D D, BUSE J B, et al. Liraglutide and renal outcomes in type 2 diabetes[J]. New Engl J Med, 2017, 377(22):2197-2198.
|
22 |
YIN W, JIANG Y, XU S, et al. Protein kinase C and protein kinase A are involved in the protection of recombinant human glucagon‐like peptide‐1 on glomeruli and tubules in diabetic rats[J]. J Diabetes Investig, 2019, 10:613-625.
|
23 |
LILJEDAHL L, PEDERSEN M H, MCGUIRE J N, et al. The impact of the glucagon-like peptide 1 receptor agonist liraglutide on the streptozotocin-induced diabetic mouse kidney proteome[J]. Physiol Rep, 2019, 7(4):e13994.
|
24 |
LI Y K, MA D X, WANG Z M, et al. The glucagon-like peptide-1 (GLP-1) analog liraglutide attenuates renal fibrosis[J]. Pharmacol Res, 2018, 131:102-111.
|
25 |
JIA Y, ZHENG Z J,GUAN M P,et al. Exendin-4 ameliorates high-glucose-induced fibrosis by inhibiting the secretion of miR-192 from injured renal tubular epithelial cells[J]. Exp Mol Med, 2018, 50(5):1-13.
|
26 |
MUSKIET M H A, TONNEIJCK L, SMITS M M, et al. GLP-1 and the kidney: from physiology to pharmacology and outcomes in diabetes[J]. Nat Rev Nephrol, 2017, 13(4):605-628.
|
27 |
REN Q, YOU YU S. CD2-associated protein participates in podocyte apoptosis via PI3K/Akt signaling pathway[J]. J Recept Signal Transduct Res, 2016, 36(3):288-291.
|
28 |
WANG Y Y, TANG L Q, WEI W. Berberine attenuates podocytes injury caused by exosomes derived from high glucose-induced mesangial cells through TGFβ1-PI3K/AKT pathway[J]. Eur J Pharmacol, 2018, 824:185-192.
|
29 |
谢海平,林 帆,陈 彦,等利拉鲁肽治疗2型糖尿病合并非酒精性脂肪性肝病的研究进展[J].临床肝胆病杂志,2020,36(9):2111-2114.
|
30 |
李德伦,吴玲玲,董哲毅,等.小檗碱治疗肾脏疾病研究现状[J].解放军医学杂志,2020,45(10):1092-1098.
|