1 |
RANGEL-GOMEZ M, MEETER M. Neurotransmitters and novelty: a systematic review[J]. J Psychopharmacol, 2016, 30(1): 3-12.
|
2 |
任 斐, 彭婉舒, 贡时雨,等. 神经再生机制的研究进展[J]. 中国药物与临床, 2014, 14(4): 473-476.
|
3 |
STRANDWITZ P. Neurotransmitter modulation by the gut microbiota[J]. Brain Res, 2018, 1693(Pt B): 128-133.
|
4 |
ORR M B, GENSEL J C. Spinal cord injury scarring and inflammation: therapies targeting glial and inflammatory responses[J]. Neurotherapeutics, 2018, 15(3): 541-553.
|
5 |
STREY K. Acetylcholin, der zentrale neurotransmitter[J]. Chem Unserer Zeit, 2020, 54(5):276-283.
|
6 |
蔡艳华, 岳 峰, 叶超群. 脊髓损伤后脊髓内神经递质含量的变化及其作用[J]. 中国康复理论与实践, 2010, 16(6): 540-542.
|
7 |
SALEH A, SABBIR M G, AGHANOORI M R, et al. Muscarinic toxin 7 signals via Ca2+/calmodulin-dependent protein kinase kinase β to augment mitochondrial function and prevent neurodegeneration[J]. Mol Neurobiol, 2020, 57(6): 2521-2538.
|
8 |
王 雪, 惠 洋, 高 旭,等. 毒蕈碱乙酰胆碱受体在中枢神经系统中的作用[J]. 生命的化学, 2020,40(8):1270-1278.
|
9 |
杜冠华. 神经药理学研究与新药研发的新机遇[J]. 药学进展, 2019, 43(2): 81-82.
|
10 |
VIREL A, REHNMARK A, ORÄDD G, et al. Magnetic resonance imaging as a tool to image neuroinflammation in a rat model of Parkinson’s disease: phagocyte influx to the brain is promoted by bilberry-enriched diet[J]. Eur J Neurosci, 2015, 42(10): 2761-2771.
|
11 |
GUERTIN P A. Synergistic activation of the central pattern generator for locomotion by l-beta-3,4-dihydroxyphenylalanine and quipazine in adult paraplegic mice[J]. Neurosci Lett, 2004,358(2): 71-74.
|
12 |
PENDLETON R G, RASHEED A, SARDINA T, et al. Effects of tyrosine hydroxylase mutants on locomotor activity in Drosophila: a study in functional genomics[J]. Behav Genet, 2002, 32(2): 89-94.
|
13 |
RAPPORT M M, GREEN A A, PAGE I H. Serum vasoconstrictor (serotonin) Ⅳ. Isolation and characterization[J].J Biol Chem,1948,176(3):1243-1251.
|
14 |
WHITAKER-AZMITIA P M. The discovery of serotonin and its role in neuroscience[J]. Neuropsychopharmacology, 1999, 21(2 ): 2S-8S.
|
15 |
LI Y Q, LI L S, STEPHENS M J, et al. Synthesis, transport, and metabolism of serotonin formed from exogenously applied 5-HTP after spinal cord injury in rats[J]. J Neurophysiol, 2014, 111(1): 145-163.
|
16 |
WU X, KUSHWAHA N, ALBERT P R, et al.A critical protein kinase C phosphorylation site on the 5-HT(1A) receptor controlling coupling to N-type calcium channels[J]. J Physiol, 2002, 538(pt 1): 41-51.
|
17 |
D’AMICO J M, MURRAY K C, LI Y Q, et al. Constitutively active 5-HT2/α1 receptors facilitate muscle spasms after human spinal cord injury[J]. J Neurophysiol, 2013, 109(6): 1473-1484.
|
18 |
PERRIER J F, ALABURDA A, HOUNSGAARD J. 5-HT1A receptors increase excitability of spinal motoneurons by inhibiting a TASK-1-like K+ current in the adult turtle[J]. J Physiol, 2003, 548(Pt 2): 485-492.
|
19 |
GRUNNET M, JESPERSEN T, PERRIER J F. 5-HT1A receptors modulate small-conductance Ca2+-activated K+ channels[J]. J Neurosci Res, 2004,78(6): 845-854.
|
20 |
巴迎春, 唐建中, 范 艳,等. 脊髓损伤亚急性期移植神经干细胞:损伤脊髓5-羟色胺的表达[J]. 中国组织工程研究, 2012, 16(6): 1050-1055.
|
21 |
詹丽杏, 李兆申, 邹多武, 等. 内脏高敏感大鼠肠道和脊髓5-羟色胺能神经元及神经纤维分布[J]. 第二军医大学学报, 2003, 24(2): 131-134.
|
22 |
姜晓丹, 宋文光, 徐如祥, 等. 脑源性神经营养因子与中枢神经修复再生[J]. 临床神经病学杂志,2000, 13(4): 254-255.
|
23 |
RANK M M, LI X L, BENNETT D J, et al. Role of endogenous release of norepinephrine in muscle spasms after chronic spinal cord injury[J]. J Neurophysiol, 2007, 97(5): 3166-3180.
|
24 |
HARTMAN B K. Immunofluorescence of dopamine-β-hydroxylase.Application of improved methodology to the localization of the peripheral and central noradrenergic nervous system[J].J Histochem Cytochem,1973,21(4):312-332.
|
25 |
CHEN T J, KUKLEY M. Glutamate receptors and glutamatergic signalling in the peripheral nerves[J]. Neural Regen Res, 2020, 15(3): 438-447.
|
26 |
BURNS A, ADELI H, BUFORD J A. Brain-computer interface after nervous system injury[J]. Neuroscientist,2014, 20(6): 639-651.
|
27 |
张 辉, 徐满英. γ-氨基丁酸作用的研究进展[J]. 哈尔滨医科大学学报, 2006, 40(3): 267-269.
|
28 |
ROMAUS-SANJURJO D, RODICIO M C, BARREIRO-IGLESIAS A. Gamma-aminobutyric acid (GABA) promotes recovery from spinal cord injury in lampreys: role of GABA receptors and perspective on the translation to mammals[J]. Neural Regen Res, 2019, 14(10): 1695-1696.
|
29 |
刘 婧, 徐文锦, 洪青晓,等. γ-氨基丁酸能系统在药物成瘾中的作用研究进展[J]. 中华精神科杂志,2019, 52(2): 149-154.
|
30 |
侯润宇. 脊髓硬膜外电刺激对步行CPG可塑性的影响[D]. 北京: 中国人民解放军医学院, 2014.
|
31 |
李伟红, 刘媛媛, 庄晓燕,等. γ-氨基丁酸及拮抗剂对大鼠黑质致密部神经元活动的影响[J]. 数理医药学杂志,2007, 20(3): 302-304.
|
32 |
RIVERA C, VOIPIO J, PAYNE J A, et al. The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation[J].Nature,1999,397(6716):251-255.
|
33 |
周鸿铭, 雷 娜, 鲁亚平.甘氨酸神经递质研究进展[J]. 生物学杂志, 2011, 28(1): 79-81.
|
34 |
FANTINELLI J C, GONZÁLEZ ARBELÁEZ L F, PÉREZ NÚÑEZ I A, et al. Protective effects of N-(2-mercaptopropionyl)-glycine against ischemia-reperfusion injury in hypertrophied hearts[J]. Exp Mol Pathol, 2013, 94(1): 277-284.
|
35 |
CHEN Z, HU B, WANG F Z, et al. Glycine bidirectionally regulates ischemic tolerance via different mechanisms including NR2A-dependent CREB phosphorylation[J]. J Neurochem, 2015, 133(3): 397-408.
|
36 |
SARANSAARI P, OJA S S. Characteristics of hippocampal glycine release in cell-damaging conditions in the adult and developing mouse[J]. Neurochem Res,2001, 26(7): 845-852.
|
37 |
TOUBIA T, KHALIFE T. The endogenous opioid system: role and dysfunction caused by opioid therapy[J]. Clin Obstet Gynecol, 2019, 62(1): 3-10.
|
38 |
GOMES I, SIERRA S, LUEPTOW L, et al. Biased signaling by endogenous opioid peptides[J]. Proc Natl Acad Sci U S A, 2020, 117(21): 11820-11828.
|
39 |
HARRISON S, GEPPETTI P. Substance P[J]. Int J Biochem Cell Biol, 2001, 33(6): 555-576.
|
40 |
DE KONINCK Y, HENRY J L. Substance P-mediated slow excitatory postsynaptic potential elicited in dorsal horn neurons in vivo by noxious stimulation[J]. Proc Natl Acad Sci U S A, 1991, 88(24): 11344-11348.
|
41 |
JEONG Y M, CHENG X W, LEE K H, et al. Substance P enhances the local activation of NK1R-expressing c-kit+ cardiac progenitor cells in right atrium of ischemia/reperfusion-injured heart[J]. BMC Mol Cell Biol,2020, 21(1): 41.
|
42 |
GONZÁLEZ-CABRERA C, MEZA R, ULLOA L, et al. Characterization of the axon initial segment of mice substantia nigra dopaminergic neurons[J]. J Comp Neurol, 2017, 525(16): 3529-3542.
|
43 |
NARDONE R, HÖLLER Y, THOMSCHEWSKI A, et al. Serotonergic transmission after spinal cord injury[J]. J Neural Transm (Vienna), 2015, 122(2): 279-295.
|