1 |
WANG X Y, LO E H. Triggers and mediators of hemorrhagic transformation in cerebral ischemia[J]. Mol Neurobiol, 2003, 28(3): 229-244.
|
2 |
AMANAKIS G, MURPHY E. Cyclophilin D: an integrator of mitochondrial function[J]. Front Physiol, 2020, 11: 595.
|
3 |
AGARWAL A, WU P H, HUGHES E G, et al. Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes[J]. Neuron, 2017, 93(3): 587-605.
|
4 |
ZHANG L, LIU Y, ZHOU R, et al. Cyclophilin D: guardian or executioner for tumor cells?[J]. Front Oncol, 2022, 12: 939588.
|
5 |
BRISTON T, SELWOOD D L, SZABADKAI G,et al. Mitochondrial permeability transition: a molecular lesion with multiple drug targets[J]. Trends Pharmacol Sci, 2019, 40(1): 50-70.
|
6 |
HALECKOVA A, BENEK O, ZEMANOVÁ L, et al. Small-molecule inhibitors of cyclophilin D as potential therapeutics in mitochondria-related diseases[J]. Med Res Rev, 2022, 42(5): 1822-1855.
|
7 |
DUMBALI S P, WENZEL P L. Mitochondrial permeability transition in stem cells, development, and disease[J]. Adv Exp Med Biol, 2023, 1409: 1-22.
|
8 |
WU P K, HONG S K, PARK J I. Mortalin depletion induces MEK/ERK-dependent and ANT/CypD-mediated death in vemurafenib-resistant B-RafV600E melanoma cells[J]. Cancer Lett, 2021, 502: 25-33.
|
9 |
BOYENLE I D, OYEDELE A K, OGUNLANA A T, et al. Targeting the mitochondrial permeability transition pore for drug discovery: challenges and opportunities[J]. Mitochondrion, 2022, 63: 57-71.
|
10 |
FENG W Y, WANG J B, LI B D, et al. Graphene oxide leads to mitochondrial-dependent apoptosis by activating ROS-p53-mPTP pathway in intestinal cells[J]. Int J Biochem Cell Biol, 2022, 146: 106206.
|
11 |
MCGEE A, BAINES C. Complement 1q-binding protein inhibits the mitochondrial permeability transition pore and protects against oxidative stress-induced death[J]. Biochem J, 2011, 433(1): 119-125.
|
12 |
AMODEO G F, PAVLOV E V.Amyloid β,α-synuclein and the c subunit of the ATP synthase: can these peptides reveal an amyloidogenic pathway of the permeability transition pore?[J]. Biochim Biophys Acta Biomembr, 2021, 1863(3): 183531.
|
13 |
YAN S J, DU F, WU L, et al. F1F0 ATP synthase-cyclophilin D interaction contributes to diabetes-induced synaptic dysfunction and cognitive decline[J]. Diabetes, 2016, 65(11): 3482-3494.
|
14 |
HURST S, GONNOT F, DIA, et al. Phosphorylation of cyclophilin D at serine 191 regulates mitochondrial permeability transition pore opening and cell death after ischemia-reperfusion[J].Cell Death Dis,2020,11(8):661.
|
15 |
SAMBRI I, MASSA F, GULLO F, et al. Impaired flickering of the permeability transition pore causes SPG7 spastic paraplegia[J]. EBioMedicine, 2020, 61: 103050.
|
16 |
PAILLARD M, TUBBS E, THIEBAUT P A, et al. Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury[J]. Circulation, 2013, 128(14): 1555-1565.
|
17 |
BERNARDI P, CARRARO M, LIPPE G. The mitochondrial permeability transition: recent progress and open questions[J]. FEBS J, 2022, 289(22): 7051-7074.
|
18 |
RAMACHANDRAN K, MAITY S, MUTHUKUMAR A R, et al. SARS-CoV-2 infection enhances mitochondrial PTP complex activity to perturb cardiac energetics[J]. iScience, 2022, 25(1): 103722.
|
19 |
MORCIANO G, NAUMOVA N, KOPROWSKI P, et al. The mitochondrial permeability transition pore: an evolving concept critical for cell life and death[J]. Biol Rev Camb Philos Soc, 2021, 96(6): 2489-2521.
|
20 |
MODESTI L, DANESE A, ANGELA MARIA VITTO V, et al. Mitochondrial Ca2+ signaling in health, disease and therapy[J].Cells,2021,10(6): 1317.
|
21 |
BAINES C P, GUTIÉRREZ-AGUILAR M. The still uncertain identity of the channel-forming unit(s) of the mitochondrial permeability transition pore[J]. Cell Calcium, 2018, 73: 121-130.
|
22 |
SCHINZEL A C, TAKEUCHI O, HUANG Z H,et al. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia[J]. Proc Natl Acad Sci U S A, 2005, 102(34): 12005-12010.
|
23 |
ABRAMOV A Y, DUCHEN M R. Mechanisms underlying the loss of mitochondrial membrane potential in glutamate excitotoxicity[J]. Biochim Biophys Acta, 2008, 1777(7/8): 953-964.
|
24 |
MNATSAKANYAN N, PARK H A, WU J, et al. Mitochondrial ATP synthase c-subunit leak channel triggers cell death upon loss of its F1 sub complex[J]. Cell Death Differ, 2022, 29(9): 1874-1887.
|
25 |
YAMAGUCHI T, MIYATA K, SHIBASAKI F,et al. Effect of cyclosporin a on immediate early gene in rat global ischemia and its neuroprotection[J]. J Pharmacol Sci, 2006, 100(1): 73-81.
|
26 |
OKADA M, YAMASHITA S, UEYAMA H, et al. Long-term effects of edaravone on survival of patients with amyotrophic lateral sclerosis[J]. eNeurological Sci, 2018, 11: 11-14.
|
27 |
AYOUB I M, RADHAKRISHNAN J, GAZMURI R J. In vivo opening of the mitochondrial permeability transition pore in a rat model of ventricular fibrillation and closed-chest resuscitation[J]. Am J Transl Res, 2017, 9(7): 3345-3359.
|
28 |
VACHON P, BEAUDRY F, MARIER J F, et al. Cyclosporin A in blood and brain tissue following intra-carotid injections in normal and stroke-induced rats[J]. Brain Res, 2002, 943(1): 1-8.
|
29 |
LI P G, HE Q P, SIESJÖ B K. Effects of intracarotid arterial injection of cyclosporin A and spontaneous hypothermia on brain damage incurred after a long period of global ischemia[J].Brain Res,2001,890(2): 306-313.
|
30 |
ENDLICHER R, KRIVÁKOVÁ P, LOTKOVA H, et al. Tissue specific sensitivity of mitochondrial permeability transition pore to Ca2+ ions[J]. Acta Medica, 2009, 52(2): 69-72.
|
31 |
ZHENG J Y, CUI E H, YANG H K, et al. Targeting cyclophilin-D by compound 19 protects neuronal cells from oxygen glucose deprivation/re-oxygenation[J]. Oncotarget, 2017, 8(52): 90238-90249.
|
32 |
PENG J Z, XUE L, CHEN J, et al. Influence of cyclophilin D protein expression level on endothelial cell oxidative damage resistance[J]. Genet Mol Res, 2015, 14(2): 4258-4268.
|
33 |
HUANG P, WU S P, WANG N, et al. Hydroxysafflor yellow A alleviates cerebral ischemia reperfusion injury by suppressing apoptosis via mitochondrial permeability transition pore[J]. Phytomedicine, 2021, 85: 153532.
|
34 |
WU J, DENG Z Y, SUN M M, et al. Polydatin protects against lipopolysaccharide-induced endothelial barrier disruption via SIRT3 activation[J]. Lab Invest, 2020, 100(4): 643-656.
|
35 |
MARCU R, KOTHA S, ZHI Z W, et al. The mitochondrial permeability transition pore regulates endothelial bioenergetics and angiogenesis[J]. Circ Res, 2015, 116(8): 1336-1345.
|
36 |
DENORME F, MANNE B K, PORTIER I, et al. Platelet necrosis mediates ischemic stroke outcome in mice[J]. Blood, 2020, 135(6): 429-440.
|
37 |
IKEDA G, MATOBA T, ISHIKITA A, et al. Nanoparticle-mediated simultaneous targeting of mitochondrial injury and inflammation attenuates myocardial ischemia-reperfusion injury[J]. J Am Heart Assoc, 2021, 10(12): e019521.
|
38 |
OKAHARA A, KOGA J I, MATOBA T, et al. Simultaneous targeting of mitochondria and monocytes enhances neuroprotection against ischemia-reperfusion injury[J]. Sci Rep, 2020, 10(1): 14435.
|
39 |
VERES B, EROS K, ANTUS C, et al. Cyclophilin D-dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia[J]. FEBS Open Bio, 2021, 11(3): 684-704.
|
40 |
RAO V K, CARLSON E A, YAN S S. Mitochondrial permeability transition pore is a potential drug target for neurodegeneration[J]. Biochim Biophys Acta BBA Mol Basis Dis, 2014, 1842(8): 1267-1272.
|
41 |
GUO H X, WANG F, YU K Q, et al. Novel cyclophilin D inhibitors derived from quinoxaline exhibit highly inhibitory activity against rat mitochondrial swelling and Ca2+ uptake/release[J]. Acta Pharmacol Sin, 2005, 26(10): 1201-1211.
|
42 |
VALASANI K R, SUN Q R, FANG D, et al. Identification of a small molecule cyclophilin D inhibitor for rescuing aβ-mediated mitochondrial dysfunction[J]. ACS Med Chem Lett, 2016, 7(3): 294-299.
|
43 |
SHORE E R, AWAIS M, KERSHAW N M, et al. Small molecule inhibitors of cyclophilin D to protect mitochondrial function as a potential treatment for acute pancreatitis[J]. J Med Chem, 2016, 59(6): 2596-2611.
|
44 |
XIE L Q, CHENG L, XU G X, et al. The novel cyclophilin D inhibitor compound 19 protects retinal pigment epithelium cells and retinal ganglion cells from UV radiation[J]. Biochem Biophys Res Commun, 2017, 487(4): 807-812.
|
45 |
KENT A C, BARADIE K B YEL, HAMRICK M W. Targeting the mitochondrial permeability transition pore to prevent age-associated cell damage and neurodegeneration[J]. Oxid Med Cell Longev, 2021, 2021: 6626484.
|