1 |
MOON A M, SINGAL A G, TAPPER E B. Contemporary epidemiology of chronic liver disease and cirrhosis[J]. Clin Gastroenterol Hepatol, 2020, 18(12): 2650-2666.
|
2 |
张雪萍, 尚小飞, 李秀惠. 肝纤维化的中西医结合诊治进展[J]. 临床肝胆病杂志, 2023, 39(2): 284-289.
|
3 |
KAMM D R, MCCOMMIS K S. Hepatic stellate cells in physiology and pathology[J]. J Physiol, 2022, 600(8): 1825-1837.
|
4 |
TRAUTWEIN C, FRIEDMAN S L, SCHUPPAN D, et al. Hepatic fibrosis: concept to treatment[J]. J Hepatol, 2015, 62(1 ): S15-S24.
|
5 |
阿比丹·拜合提亚尔, 郭津生. 肝纤维化发生时活化肝星状细胞的代谢改变[J]. 中国细胞生物学学报, 2021, 43(10): 2054-2060.
|
6 |
XU F Y, LIU C W, ZHOU D D, et al. TGF-β/SMAD pathway and its regulation in hepatic fibrosis[J]. J Histochem Cytochem, 2016, 64(3): 157-167.
|
7 |
TSUCHIDA T, FRIEDMAN S L. Mechanisms of hepatic stellate cell activation[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(7): 397-411.
|
8 |
DEWIDAR B, MEYER C, DOOLEY S, et al. TGF-β in hepatic stellate cell activation and liver fibrogenesis-updated 2019[J]. Cells, 2019, 8(11): 1419.
|
9 |
KAZLAUSKAS A. PDGFs and their receptors[J]. Gene, 2017, 614: 1-7.
|
10 |
KLINKHAMMER B M, FLOEGE J, BOOR P. PDGF in organ fibrosis[J]. Mol Aspects Med, 2018, 62: 44-62.
|
11 |
CUI N, HU M, KHALIL R A. Biochemical and biological attributes of matrix metalloproteinases[J]. Prog Mol Biol Transl Sci, 2017, 147: 1-73.
|
12 |
ROBERT S, GICQUEL T, VICTONI T, et al. Involvement of matrix metalloproteinases (MMPs) and inflammasome pathway in molecular mechanisms of fibrosis[J]. Biosci Rep, 2016, 36(4): e00360.
|
13 |
郭争荣, 孙殿兴, 李兵顺. 基质金属蛋白酶与肝纤维化的基因治疗[J]. 国际消化病杂志, 2015, 35(1): 5-7.
|
14 |
RAMAZANI Y, KNOPS N, ELMONEM M A, et al. Connective tissue growth factor (CTGF) from basics to clinics[J]. Matrix Biol, 2018, 68/69: 44-66.
|
15 |
DROPPELMANN C A, GUTIÉRREZ J, VIAL C, et al. Matrix metalloproteinase-2-deficient fibroblasts exhibit an alteration in the fibrotic response to connective tissue growth factor/CCN2 because of an increase in the levels of endogenous fibronectin[J]. J Biol Chem, 2009, 284(20): 13551-13561.
|
16 |
PARDALI E, SANCHEZ-DUFFHUES G, GOMEZ-PUERTO M C, et al. TGF-β-induced endothelial-mesenchymal transition in fibrotic diseases[J]. Int J Mol Sci, 2017, 18(10): 2157.
|
17 |
SUN Y M, LIU B Y, XIE J P, et al. Aspirin attenuates liver fibrosis by suppressing TGF-β1/Smad signaling[J]. Mol Med Rep, 2022, 25(5): 181.
|
18 |
DING W W, ZHOU D H, ZHANG S M, et al. Trimetazidine inhibits liver fibrosis and hepatic stellate cell proliferation and blocks transforming growth factor-β (TGFβ)/Smad signaling in vitro and in vivo [J]. Bioengineered, 2022, 13(3): 7147-7156.
|
19 |
XIANG D J, ZOU J, ZHU X Y, et al. Physalin D attenuates hepatic stellate cell activation and liver fibrosis by blocking TGF-β/Smad and YAP signaling[J]. Phytomedicine, 2020, 78: 153294.
|
20 |
WANG X Q, GAO Y Z, LI Y, et al. Roseotoxin B alleviates cholestatic liver fibrosis through inhibiting PDGF-B/PDGFR-β pathway in hepatic stellate cells[J]. Cell Death Dis, 2020, 11(6): 458.
|
21 |
CHEN C, LI X K, WANG L. Thymosinβ4 alleviates cholestatic liver fibrosis in mice through downregulating PDGF/PDGFR and TGFβ/Smad pathways[J]. Dig Liver Dis, 2020, 52(3): 324-330.
|
22 |
CRISTINO L, BISOGNO T, MARZO V D. Cannabinoids and the expanded endocannabinoid system in neurological disorders[J]. Nat Rev Neurol, 2020, 16(1): 9-29.
|
23 |
MBOUMBA BOUASSA R S, SEBASTIANI G, MARZO V D, et al. Cannabinoids and chronic liver diseases[J]. Int J Mol Sci, 2022, 23(16): 9423.
|
24 |
张自力, 张 涉, 郭 瑶, 等. 大麻素受体在肝星状细胞活化中的作用及姜黄素干预效应[J]. 中国药理学通报, 2013, 29(5): 626-631.
|
25 |
龙翠珍, 舒远辉, 何 萍, 等. 大麻素受体2激动剂AM1241对TGF-β1诱导的HSC-T6增殖、活化及凋亡的影响[J]. 天津医药, 2020, 48(7): 606-610.
|
26 |
JIANG L Y, ZHANG H J, XIAO D S, et al. Farnesoid X receptor (FXR): structures and ligands[J]. Comput Struct Biotechnol J, 2021, 19: 2148-2159.
|
27 |
蒲诗云, 任常谕. 核受体FXR在肝星状细胞及肝纤维化中的作用[J]. 生理科学进展, 2022, 53(1): 19-23.
|
28 |
FAN Y Y, DING W, ZHANG C, et al. Obeticholic acid prevents carbon tetrachloride-induced liver fibrosis through interaction between farnesoid X receptor and Smad3[J]. Int Immunopharmacol, 2019, 77: 105911.
|
29 |
SCHWABL P, HAMBRUCH E, BUDAS G R, et al. The non-steroidal FXR agonist cilofexor improves portal hypertension and reduces hepatic fibrosis in a rat NASH model[J]. Biomedicines, 2021, 9(1): 60.
|
30 |
MIRZA A Z, ALTHAGAFI I I, SHAMSHAD H. Role of PPAR receptor in different diseases and their ligands: physiological importance and clinical implications[J]. Eur J Med Chem, 2019, 166: 502-513.
|
31 |
HAN X, WU Y L, YANG Q, et al. Peroxisome proliferator-activated receptors in the pathogenesis and therapies of liver fibrosis[J]. Pharmacol Ther, 2021, 222: 107791.
|
32 |
ALATAS F S, MATSUURA T, PUDJIADI A H, et al. Peroxisome proliferator-activated receptor gamma agonist attenuates liver fibrosis by several fibrogenic pathways in an animal model of cholestatic fibrosis[J]. Pediatr Gastroenterol Hepatol Nutr, 2020, 23(4): 346-355.
|
33 |
CHHIMWAL J, SHARMA S, KULURKAR P, et al. Crocin attenuates CCl4-induced liver fibrosis via PPAR-γ mediated modulation of inflammation and fibrogenesis in rats[J]. Hum Exp Toxicol, 2020, 39(12): 1639-1649.
|
34 |
BEYER C, DISTLER J H W. Tyrosine kinase signaling in fibrotic disorders: translation of basic research to human disease[J]. Biochim Biophys Acta, 2013, 1832(7): 897-904.
|
35 |
张杉杉, 李海龙, 李晓平, 等. 酪氨酸激酶抑制剂与器官纤维化研究进展[J]. 中国药学杂志, 2022, 57(2): 96-101.
|
36 |
QU K, HUANG Z C, LIN T, et al. New insight into the anti-liver fibrosis effect of multitargeted tyrosine kinase inhibitors: from molecular target to clinical trials[J]. Front Pharmacol, 2015, 6: 300.
|
37 |
LIU F, BAYLISS G, ZHUANG S G. Application of nintedanib and other potential anti-fibrotic agents in fibrotic diseases[J]. Clin Sci, 2019, 133(12): 1309-1320.
|
38 |
KARIMI J, MOHAMMADALIPOUR A, SHEIKH N, et al. Protective effects of combined Losartan and Nilotinib on carbon tetrachloride (CCl4)-induced liver fibrosis in rats[J]. Drug Chem Toxicol, 2020, 43(5): 468-478.
|
39 |
HASSAN M H, GHOBARA M M. Antifibrotic effect of meloxicam in rat liver: role of nuclear factor kappa B, proinflammatory cytokines, and oxidative stress[J]. Naunyn Schmiedebergs Arch Pharmacol, 2016, 389(9): 971-983.
|
40 |
NIE X Q, YU Q Q, LI L, et al. Kinsenoside protects against radiation-induced liver fibrosis via downregulating connective tissue growth factor through TGF-β1 signaling[J]. Front Pharmacol, 2022, 13: 808576.
|
41 |
崔小伟, 刘晓智. 沉默结缔组织生长因子对酒精性肝纤维化干预效果的研究[J]. 实用医学杂志, 2018, 34(13): 2132-2136.
|
42 |
CHEN W, YANG A T, JIA J D, et al. Lysyl oxidase (LOX) family members: rationale and their potential as therapeutic targets for liver fibrosis[J]. Hepatology, 2020, 72(2): 729-741.
|
43 |
ZHAO W S, YANG A T, CHEN W, et al. Inhibition of lysyl oxidase-like 1 (LOXL1) expression arrests liver fibrosis progression in cirrhosis by reducing elastin crosslinking[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(4 Pt A): 1129-1137.
|
44 |
IKENAGA N, PENG Z W, VAID K A, et al. Selective targeting of lysyl oxidase-like 2 (LOXL2) suppresses hepatic fibrosis progression and accelerates its reversal[J]. Gut, 2017, 66(9): 1697-1708.
|