| 1 |
LI X J, YOU X Y, WANG C Y, et al. Bidirectional brain-gut-microbiota axis in increased intestinal permeability induced by central nervous system injury[J]. CNS Neurosci Ther, 2020, 26(8): 783-790.
|
| 2 |
BLACK C J, DROSSMAN D A, TALLEY N J, et al. Functional gastrointestinal disorders: advances in understanding and management[J]. Lancet, 2020, 396(10263): 1664-1674.
|
| 3 |
张敬晶, 徐 华, 程 慧, 等. 老年炎症性肠病临床特征及诊治进展[J]. 中国实用内科杂志, 2024, 44(10): 872-877.
|
| 4 |
李学锋, 彭 霞, 周明欢. 我国炎症性肠病流行病学研究进展[J]. 现代消化及介入诊疗, 2020, 25(9): 1265-1267.
|
| 5 |
CRANDALL W V, HALTERMAN T E, MACKNER L M. Anxiety and pain symptoms in children with inflammatory bowel disease and functional gastrointestinal disorders undergoing colonoscopy[J]. J Pediatr Gastroenterol Nutr, 2007, 44(1): 63-67.
|
| 6 |
FAIRBRASS K M, LOVATT J, BARBERIO B, et al. Bidirectional brain-gut axis effects influence mood and prognosis in IBD: a systematic review and meta-analysis[J]. Gut, 2022, 71(9): 1773-1780.
|
| 7 |
CHEN Q Y, LU J B, QIN H L, et al. Clinical significance and intervention strategy of gastrointestinal psychiatry[J]. Zhonghua Wei Chang Wai Ke Za Zhi, 2022, 25(9): 771-776.
|
| 8 |
AGHDAM M A, SHARIFI A, PEDRAM M M. Combination of rs-fMRI and sMRI data to discriminate autism spectrum disorders in young children using deep belief network[J]. J Digit Imaging, 2018, 31(6): 895-903.
|
| 9 |
DAVIS K D, POPE G, CHEN J, et al. Cortical thinning in IBS: implications for homeostatic, attention, and pain processing[J]. Neurology, 2008, 70(2): 153-154.
|
| 10 |
LABRAKAKIS C. The role of the insular cortex in pain[J]. Int J Mol Sci, 2023, 24(6): 5736.
|
| 11 |
PICHÉ M, CHEN J I, ROY M, et al. Thicker posterior insula is associated with disease duration in women with irritable bowel syndrome (IBS) whereas thicker orbitofrontal cortex predicts reduced pain inhibition in both IBS patients and controls[J]. J Pain, 2013, 14(10): 1217-1226.
|
| 12 |
BLANKSTEIN U, CHEN J, DIAMANT N E, et al. Altered brain structure in irritable bowel syndrome: potential contributions of pre-existing and disease-driven factors[J]. Gastroenterology, 2010, 138(5): 1783-1789.
|
| 13 |
BHATT R R, GUPTA A, LABUS J S, et al. Altered brain structure and functional connectivity and its relation to pain perception in girls with irritable bowel syndrome[J]. Psychosom Med, 2019, 81(2): 146-154.
|
| 14 |
YUE J, ZHAO N, QIAO Y, et al. Higher reliability and validity of Wavelet-ALFF of resting-state fMRI: From multicenter database and application to rTMS modulation[J]. Hum Brain Mapp, 2023, 44(3): 1105-1117.
|
| 15 |
HONG J Y, NALIBOFF B, LABUS J S, et al. Altered brain responses in subjects with irritable bowel syndrome during cued and uncued pain expectation[J]. Neurogastroenterol Motil, 2016, 28(1): 127-138.
|
| 16 |
MERTZ H, MORGAN V, TANNER G, et al. Regional cerebral activation in irritable bowel syndrome and control subjects with painful and nonpainful rectal distention[J]. Gastroenterology, 2000, 118(5): 842-848.
|
| 17 |
WILDER-SMITH C H, SCHINDLER D, LOVBLAD K, et al. Brain functional magnetic resonance imaging of rectal pain and activation of endogenous inhibitory mechanisms in irritable bowel syndrome patient subgroups and healthy controls[J]. Gut, 2004, 53(11): 1595-1601.
|
| 18 |
CHEN X F, GUO Y, LU X Q, et al. Aberrant intraregional brain activity and functional connectivity in patients with diarrhea-predominant irritable bowel syndrome[J]. Front Neurosci, 2021, 15: 721822.
|
| 19 |
MA X F, LI S M, TIAN J Z, et al. Altered brain spontaneous activity and connectivity network in irritable bowel syndrome patients: a resting-state fMRI study[J]. Clin Neurophysiol, 2015, 126(6): 1190-1197.
|
| 20 |
AO W Q, CHENG Y G, CHEN M X, et al. Intrinsic brain abnormalities of irritable bowel syndrome with diarrhea: a preliminary resting-state functional magnetic resonance imaging study[J]. BMC Med Imaging, 2021, 21(1): 4.
|
| 21 |
RINGEL Y, DROSSMAN D A, LESERMAN J L, et al. Effect of abuse history on pain reports and brain responses to aversive visceral stimulation: an FMRI study[J]. Gastroenterology, 2008, 134(2): 396-404.
|
| 22 |
ELSENBRUCH S, ROSENBERGER C, ENCK P, et al. Affective disturbances modulate the neural processing of visceral pain stimuli in irritable bowel syndrome: an fMRI study[J]. Gut, 2010, 59(4): 489-495.
|
| 23 |
KE J, QI R, LIU C, et al. Abnormal regional homogeneity in patients with irritable bowel syndrome: a resting-state functional MRI study[J]. Neurogastroenterol Motil, 2015, 27(12): 1796-1803.
|
| 24 |
GULERIA A, KARYAMPUDI A, SINGH R, et al. Mapping of brain activations to rectal balloon distension stimuli in male patients with irritable bowel syndrome using functional magnetic resonance imaging[J]. J Neurogastroenterol Motil, 2017, 23(3): 415-427.
|
| 25 |
QI R F, LIU C, KE J, et al. Intrinsic brain abnormalities in irritable bowel syndrome and effect of anxiety and depression[J]. Brain Imaging Behav, 2016, 10(4): 1127-1134.
|
| 26 |
LI J, HE P, LU X Q, et al. A resting-state functional magnetic resonance imaging study of whole-brain functional connectivity of voxel levels in patients with irritable bowel syndrome with depressive symptoms[J]. J Neurogastroenterol Motil, 2021, 27(2): 248-256.
|
| 27 |
LIU P, WANG G L, ZENG F, et al. Abnormal brain structure implicated in patients with functional dyspepsia [J]. Brain Imaging Behav, 2018, 12(2): 459-466.
|
| 28 |
LIU P, FAN Y, WEI Y, et al. Altered structural and functional connectivity of the insula in functional dyspepsia[J]. Neurogastroenterol Motil, 2018, 30(9): e13345.
|
| 29 |
NAN J, LIU J, MU J, et al. Anatomically related gray and white matter alterations in the brains of functional dyspepsia patients[J]. Neurogastroenterol Motil, 2015, 27(6): 856-864.
|
| 30 |
ZENG F, QIN W, YANG Y, et al. Regional brain structural abnormality in meal-related functional dyspepsia patients: a voxel-based morphometry study[J]. PLoS One, 2013, 8(7): e68383.
|
| 31 |
LIU P, ZENG F, YANG F, et al. Altered structural covariance of the striatum in functional dyspepsia patients[J]. Neurogastroenterol Motil, 2014, 26(8): 1144-1154.
|
| 32 |
ZENG F, SUN R R, HE Z X, et al. Altered functional connectivity of the amygdala and sex differences in functional dyspepsia[J]. Clin Transl Gastroenterol, 2019, 10(6): e00046.
|
| 33 |
VANNER S, GREENWOOD-VAN MEERVELD B, MAWE G, et al. Fundamentals of neurogastroenterology: basic science[J]. Gastroenterology, 2016, 150(6): 1280-1291.
|
| 34 |
GWEE K A, LEE Y Y, SUZUKI H, et al. Asia-Pacific guidelines for managing functional dyspepsia overlapping with other gastrointestinal symptoms[J]. J Gastroenterol Hepatol, 2023, 38(2): 197-209.
|
| 35 |
CHEN Y W, WANG R F, HOU B, et al. Regional brain activity during rest and gastric water load in subtypes of functional dyspepsia: a preliminary brain functional magnetic resonance imaging study[J]. J Neurogastroenterol Motil, 2018, 24(2): 268-279.
|
| 36 |
QI R F, SHI Z, WENG Y F, et al. Similarity and diversity of spontaneous brain activity in functional dyspepsia subtypes[J]. Acta Radiol, 2020, 61(7): 927-935.
|
| 37 |
NAN J, LIU J, ZHANG D, et al. Altered intrinsic regional activity and corresponding brain pathways reflect the symptom severity of functional dyspepsia[J]. Neurogastroenterol Motil, 2014, 26(5): 660-669.
|
| 38 |
ZHOU G Y, LIU P, WANG J J, et al. Fractional amplitude of low-frequency fluctuation changes in functional dyspepsia: a resting-state fMRI study[J]. Magn Reson Imaging, 2013, 31(6): 996-1000.
|
| 39 |
LIU P, WANG G, LIU Y, et al. Disrupted intrinsic connectivity of the periaqueductal gray in patients with functional dyspepsia: a resting-state fMRI study[J]. Neurogastroenterol Motil, 2017, 29: e13060.
|
| 40 |
LIU P, QIN W, WANG J J, et al. Identifying neural patterns of functional dyspepsia using multivariate pattern analysis: a resting-state FMRI study[J]. PLoS One, 2013, 8(7): e68205.
|
| 41 |
LIU P, ZENG F, ZHOU G, et al. Alterations of the default mode network in functional dyspepsia patients: a resting-state fmri study[J]. Neurogastroenterol Motil, 2013, 25(6): e382-8.
|
| 42 |
ZIKOU A K, KOSMIDOU M, ASTRAKAS L G, et al. Brain involvement in patients with inflammatory bowel disease: a voxel-based morphometry and diffusion tensor imaging study[J]. Eur Radiol, 2014, 24(10): 2499-2506.
|
| 43 |
GOODYEAR B G, HEIDARI F, INGRAM R J M, et al. Multimodal brain MRI of deep gray matter changes associated with inflammatory bowel disease[J]. Inflamm Bowel Dis, 2023, 29(3): 405-416.
|
| 44 |
BAO C H, LIU P, LIU H R, et al. Alterations in brain grey matter structures in patients with Crohn’s disease and their correlation with psychological distress[J]. J Crohns Colitis, 2015, 9(7): 532-540.
|
| 45 |
ZHANG S M, CHEN F R, WU J Y, et al. Regional gray matter volume changes in brains of patients with ulcerative colitis[J]. Inflamm Bowel Dis, 2022, 28(4): 599-610.
|
| 46 |
AGOSTINI A, CAMPIERI M, BERTANI A, et al. Absence of change in the gray matter volume of patients with ulcerative colitis in remission: a voxel based morphometry study[J]. Biopsychosoc Med, 2015, 9(1): 1.
|
| 47 |
KORNELSEN J, WILSON A, LABUS J S, et al. Brain resting-state network alterations associated with Crohn’s disease[J]. Front Neurol, 2020, 11: 48.
|
| 48 |
AGOSTINI A, BALLOTTA D, RIGHI S, et al. Stress and brain functional changes in patients with Crohn’s disease: a functional magnetic resonance imaging study[J]. Neurogastroenterol Motil, 2017, 29(10): 1-10.
|
| 49 |
BAO C H, LIU P, LIU H R, et al. Difference in regional neural fluctuations and functional connectivity in Crohn’s disease: a resting-state functional MRI study[J]. Brain Imaging Behav, 2018, 12(6): 1795-1803.
|
| 50 |
WANG J, LIU G Y, XU K, et al. The role of neurotransmitters in mediating the relationship between brain alterations and depressive symptoms in patients with inflammatory bowel disease[J]. Hum Brain Mapp, 2023, 44(16): 5357-5371.
|
| 51 |
BARBERIO B, JUDGE C, SAVARINO E V, et al. Global prevalence of functional constipation according to the Rome criteria: a systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2021, 6(8): 638-648.
|
| 52 |
WANG M, JU Y M, LU X W, et al. Longitudinal changes of amplitude of low-frequency fluctuations in MDD patients: a 6-month follow-up resting-state functional magnetic resonance imaging study[J]. J Affect Disord, 2020, 276: 411-417.
|
| 53 |
GRAY M A, CHAO C Y, STAUDACHER H M, et al. Anti-TNFα therapy in IBD alters brain activity reflecting visceral sensory function and cognitive-affective biases[J]. PLoS One, 2018, 13(3): e0193542.
|
| 54 |
THOMANN A K, SCHMITGEN M M, KMUCHE D, et al. Exploring joint patterns of brain structure and function in inflammatory bowel diseases using multimodal data fusion[J]. Neurogastroenterol Motil, 2021, 33(6): e14078.
|