1 |
高向东, 薄庭亮, 薄菱君. 溃疡性结肠炎结肠气钡双重造影检查的探讨 [J]. 山西医药杂志, 2002, 31(4): 316-317.
|
2 |
杨 敏. 多层螺旋 CT 和 MRI 对结直肠癌术前 TN 分期的对比研究 [J]. 影像研究与医学应用, 2020, 4(2):59-60.
|
3 |
陈浩漩, 邓志灏, 董玉杰. 703例电子结肠镜检查结果的回顾性分析 [J]. 中国医疗器械信息, 2020, 9:175.
|
4 |
PAULING L, ROBINSON A B, TERANISHI R, et al. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography[J]. PNAS, 1971, 68(10):2374-2376.
|
5 |
WILLIAMS H, PEMBROKE A. Sniffer dogs in the melanoma clinic? [J]. Lancet, 1989, 1(8640): 734.
|
6 |
WILLIS C M, CHURCH S M, GUEST C M, et al. Olfactory detection of human bladder cancer by dogs: proof of principle study[J]. BMJ, 2004, 329(7468): 712.
|
7 |
IBRAHIM W, WILDE M, CORDELL R, et al. Assessment of breath volatile organic compounds in acute cardiorespiratory breathlessness: a protocol describing a prospective real-world observational study[J]. BMJ Open, 2019, 9(3): e025486.
|
8 |
ESFAHANI S, WICAKSONO A, MOZDIAK E, et al. Non-invasive diagnosis of diabetes by volatile organic compounds in urine using FAIMS and Fox4000 electronic nose[J]. Biosensors (Basel), 2018, 8(4): E121.
|
9 |
ASHRAFI M, BATES M, BAGUNEID M, et al. Volatile organic compound detection as a potential means of diagnosing cutaneous wound infections[J]. Wound Repair Regen, 2017, 25(4): 574-590.
|
10 |
PROBERT C S, READE S, AHMED I. Fecal volatile organic compounds: a novel, cheaper method of diagnosing inflammatory bowel disease?[J]. Expert Rev Clin Immunol, 2014, 10(9): 1129-1131.
|
11 |
SMITH D, ŠPANĚL P. On the importance of accurate quantification of individual volatile metabolites in exhaled breath[J]. J Breath Res, 2017, 11(4): 047106.
|
12 |
AMANN A, MOCHALSKI P, RUZSANYI V, et al. Assessment of the exhalation kinetics of volatile cancer biomarkers based on their physicochemical properties[J]. J Breath Res, 2014, 8(1): 016003.
|
13 |
AMANN A, COSTELLO B D E L, MIEKISCH W, et al. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva[J]. J Breath Res, 2014, 8(3): 034001.
|
14 |
DRNGONIERI S, PENNAZZA G, CARRATU P, et al. Electronic nose technology in respiratory diseases [J]. Lung, 2017, 195(2): 157-165.
|
15 |
PERSAUD K, DODD G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose[J]. Nature, 1982, 299(5881): 352-355.
|
16 |
AMOORE J E, JOHNSTON J W Jr, RUBIN M. The sterochemical theory of odor[J]. Sci Am, 1964, 210: 42-49.
|
17 |
KAUER J S. Contributions of topography and parallel processing to odor coding in the vertebrate olfactory pathway[J]. Trends Neurosci, 1991, 14(2): 79-85.
|
18 |
GARDNER J W, BARTLETT P N. A brief history of electronic noses[J]. Sensor Actuat B Chem, 1994, 18(1-3): 210-211.
|
19 |
KONONOV A, KOROTETSKY B, JAHATSPANIAN I, et al. Online breath analysis using metal oxide semiconductor sensors (electronic nose) for diagnosis of lung cancer[J]. J Breath Res, 2019, 14(1): 016004.
|
20 |
LUCKLUM R, HAUPTMANN P. The quartz crystal microbalance: mass sensitivity, viscoelasticity and acoustic amplification [J]. Sensor Actuat B Chem, 2000(1-3), 70: 30-36.
|
21 |
YANG S, JIANG C, WEI S. Gas sensing in 2D materials [J]. Appl Phys Rev, 2017, 4: 021304.
|
22 |
PARK C, FERGUS J W, MIURA N, et al. Solid-state electrochemical gas sensors[J]. Ionics, 2009, 15(3): 261-284.
|
23 |
DONG W J, ZHAO J P, HU R S, et al. Differentiation of Chinese robusta coffees according to species, using a combined electronic nose and tongue, with the aid of chemometrics[J]. Food Chem, 2017, 229: 743-751.
|
24 |
KODOGIANNIS V S. Application of an electronic nose coupled with Fuzzy-Wavelet network for the detection of meat spoilage [J]. Food Bioprocess Technol, 2017, 10(4): 730-749.
|
25 |
HERRERO J L, LOZANO J, SANTOS J P, et al. On-line classification of pollutants in water using wireless portable electronic noses [J]. Chemosphere, 2016, 152: 107-116.
|
26 |
ZHOU C, WU Z, GUO Y, et al. Ultrasensitive, real-time and discriminative detection of improvised explosives by chemiresistive thin-film sensory array of Mn2+ tailored hierarchical ZnS [J]. Sci Rep, 2016, 6: 25588.
|
27 |
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J].CA Cancer J Clin, 2018, 68: 394–424.
|
28 |
PENG G, HAKIM M, BROZA Y Y, et al. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors[J]. Br J Cancer, 2010, 103(4): 542-551.
|
29 |
DE GOOR R MVAN, LEUNIS N, RVAN HOOREN M, et al. Feasibility of electronic nose technology for discriminating between head and neck, bladder, and colon carcinomas[J]. Eur Arch Otorhinolaryngol, 2017, 274(2): 1053-1060.
|
30 |
WESTENBRINK E, ARASARADNAM R P, O'CONNELL N, et al. Development and application of a new electronic nose instrument for the detection of colorectal cancer[J]. Biosens Bioelectron, 2015, 67: 733-738.
|
31 |
DE MEIJ T G, LARBI I B, SCHEE M PVAN DER, et al. Electronic nose can discriminate colorectal carcinoma and advanced adenomas by fecal volatile biomarker analysis: proof of principle study[J]. Int J Cancer, 2014, 134(5): 1132-1138.
|
32 |
ALTOMARE D F, PORCELLI F, PICCIARIELLO A, et al. The use of the PEN3 e-nose in the screening of colorectal cancer and polyps[J]. Tech Coloproctol, 2016, 20(6): 405-409.
|
33 |
EVAN KEULEN K, JANSEN M E, SCHRAUWEN R W M, et al. Volatile organic compounds in breath can serve as a non-invasive diagnostic biomarker for the detection of advanced adenomas and colorectal cancer[J]. Aliment Pharmacol Ther, 2020, 51(3): 334-346.
|
34 |
ZONTA G, ANANIA G, FABBRI B, et al. Preventive screening of colorectal cancer with a device based on chemoresistive sensors[J]. Sensor Actuat B Chem, 2017, 238: 1098-1101.
|
35 |
ZONTA G, ANANIA G, DE TOGNI A, et al. Use of gas sensors and FOBT for the early detection of colorectal cancer[J]. Proceedings, 2017, 1(4): 398.
|
36 |
KNIGHTS D, LASSEN K G, XAVIER R J. Advances in inflammatory bowel disease pathogenesis: linking host genetics and the microbiome[J]. Gut, 2013, 62(10): 1505-1510.
|
37 |
ARASARADNAM R P, QURAISHI N, KYROU I, et al. Insights into ‘fermentonomics’: evaluation of volatile organic compounds (VOCs) in human disease using an electronic ‘e-nose’[J]. J Med Eng Technol, 2011, 35(2): 87-91.
|
38 |
ARASARADNAM R P, OUARET N, THOMAS M G, et al. A novel tool for noninvasive diagnosis and tracking of patients with inflammatory bowel disease[J]. Inflamm Bowel Dis, 2013, 19(5): 999-1003.
|
39 |
TIELE A, WICAKSONO A, KANSARA J, et al. Breath analysis using eNose and ion mobility technology to diagnose inflammatory bowel disease-A pilot study[J]. Biosensors (Basel), 2019, 9(2): E55.
|
40 |
DE MEIJ T G, DE BOER N K, BENNINGA M A, et al. Faecal gas analysis by electronic nose as novel, non-invasive method for assessment of active and quiescent paediatric inflammatory bowel disease: Proof of principle study[J]. J Crohns Colitis, 2014: S1873-S9946(14)00285-2.
|
41 |
RICH B S, DOLGIN S E. Necrotizing enterocolitis [J]. Pediatr Rev, 2017, 38(12): 552-559.
|
42 |
DE MEIJ T G, SCHEE M PVAN DER, BERKHOUT D J, et al. Early detection of necrotizing enterocolitis by fecal volatile organic compounds analysis[J]. J Pediatr, 2015, 167(3): 562-567.
|
43 |
BERKHOUT D J C, NIEMARKT H J, BUIJCK M, et al. Detection of sepsis in preterm infants by fecal volatile organic compounds analysis: a proof of principle study[J]. J Pediatr Gastroenterol Nutr, 2017, 65(3): e47-e52.
|