Journal of Jilin University(Medicine Edition) ›› 2023, Vol. 49 ›› Issue (6): 1677-1682.doi: 10.13481/j.1671-587X.20230637
• Review • Previous Articles
Received:
2022-07-28
Online:
2023-11-28
Published:
2023-12-22
CLC Number:
Tab.1
DN podocyte injury-associated miRNA and their action targets"
MiRNA | Expression | Predicted target mRNA |
---|---|---|
MiR-15b-5p | ↓ | Sema3A/ SGK1/ PDK4 |
MiR-16-5p | ↓ | VEGFA |
MiR-23b | ↓ | G3BP2 |
MiR-25 | ↓ | CDC42 |
MiR-150-5p | ↓ | BASP1 |
MiR-203-3p | ↓ | Sema3A |
MiR-215-5p | ↓ | ZEB2 |
MiR-423-5p | ↓ | NOX4 |
MiR-874 | ↓ | TLR4 |
MiR-27a | ↑ | PPARγ |
MiR-34a | ↑ | SIRT1 |
MiR-92a-3p | ↑ | GPR124 |
MiR-138 | ↑ | SIRT1 |
MiR-155 | ↑ | SIRT1 |
MiR-193a | ↑ | WT-1 |
MiR-503 | ↑ | E2F3 |
MiR-770-5p | ↑ | TIMP3/E2F3 |
1 | ISHII H, KANEKO S, YANAI K, et al. microRNAs in podocyte injury in diabetic nephropathy[J]. Front Genet, 2020, 11: 993. |
2 | MIZUNO T, HAYASHI T, KATO R, et al. Risk factors for an early dialysis start in patients with diabetic nephropathy end-stage renal disease[J]. Ther Clin Risk Manag, 2014, 10: 73-76. |
3 | CHENG Y, WANG D D, WANG F, et al. Endogenous miR-204 protects the kidney against chronic injury in hypertension and diabetes[J]. J Am Soc Nephrol, 2020, 31(7): 1539-1554. |
4 | 曹 聃, 孙雪峰. microRNA在肾组织纤维化中的研究进展[J]. 中国实用内科杂志, 2017, 37(3): 262-266. |
5 | GREGORY R I, YAN K P, AMUTHAN G, et al. The Microprocessor complex mediates the genesis of microRNAs[J]. Nature, 2004, 432(7014): 235-240. |
6 | DU T T, ZAMORE P D. microPrimer: the biogenesis and function of microRNA[J]. Development, 2005, 132(21): 4645-4652. |
7 | FILIPOWICZ W. RNAi: the nuts and bolts of the RISC machine[J]. Cell, 2005, 122(1): 17-20. |
8 | KRAVETS I, MALLIPATTU S K. The role of podocytes and podocyte-associated biomarkers in diagnosis and treatment of diabetic kidney disease[J]. J Endocr Soc, 2020, 4(4): bvaa029. |
9 | HARALDSSON B, NYSTRÖM J, DEEN W M. Properties of the glomerular barrier and mechanisms of proteinuria[J]. Physiol Rev, 2008, 88(2): 451-487. |
10 | PERICO L, CONTI S, BENIGNI A, et al. Podocyte-actin dynamics in health and disease[J]. Nat Rev Nephrol, 2016, 12(11): 692-710. |
11 | 胡晓青, 于慧美, 沈璐妍, 等. PI3K/AKT/mTOR信号通路与线粒体稳态在疾病治疗中的作用[J]. 中国病理生理杂志, 2021, 37(11): 2072-2076. |
12 | 郭亚男, 赵瑞红, 刘 青. 自噬与糖尿病肾病关系的研究进展[J].吉林大学学报(医学版),2013,39(4):855-858. |
13 | TEH Y M, MUALIF S A, LIM S K. A comprehensive insight into autophagy and its potential signaling pathways as a therapeutic target in podocyte injury[J]. Int J Biochem Cell Biol, 2022, 143: 106153. |
14 | YANG F, QU Q S, ZHAO C Y, et al. Paecilomyces cicadae-fermented Radix astragali activates podocyte autophagy by attenuating PI3K/AKT/mTOR pathways to protect against diabetic nephropathy in mice[J]. Biomed Pharmacother, 2020, 129: 110479. |
15 | XU T, SUN D J, CHEN Y, et al. Targeting mTOR for fighting diseases: a revisited review of mTOR inhibitors[J]. Eur J Med Chem, 2020, 199: 112391. |
16 | WANG M, CHEN D Q, WANG M C, et al. Poricoic acid ZA, a novel RAS inhibitor, attenuates tubulo-interstitial fibrosis and podocyte injury by inhibiting TGF-β/Smad signaling pathway[J]. Phytomedicine, 2017, 36: 243-253. |
17 | CHEN L, YANG T, LU D W, et al. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment[J]. Biomedecine Pharmacother, 2018, 101: 670-681. |
18 | REN L Y, WAN R R, CHEN Z, et al. Triptolide alleviates podocyte epithelial-mesenchymal transition via kindlin-2 and EMT-related TGF-β/smad signaling pathway in diabetic kidney disease[J]. Appl Biochem Biotechnol, 2022, 194(2): 1000-1012. |
19 | BEATON H, ANDREWS D, PARSONS M, et al. Wnt6 regulates epithelial cell differentiation and is dysregulated in renal fibrosis[J]. Am J Physiol Renal Physiol, 2016, 311(1): F35-F45. |
20 | WAN J, HOU X Y, ZHOU Z M, et al. WT1 ameliorates podocyte injury via repression of EZH2/ β-catenin pathway in diabetic nephropathy[J]. Free Radic Biol Med, 2017, 108: 280-299. |
21 | XIE L, ZHAI R N, CHEN T, et al. Panax notoginseng ameliorates podocyte EMT by targeting the Wnt/ β-catenin signaling pathway in STZ-induced diabetic rats[J]. Drug Des Devel Ther, 2020, 14: 527-538. |
22 | FU Y Q, WANG C X, ZHANG D M, et al. miR-15b-5p ameliorated high glucose-induced podocyte injury through repressing apoptosis, oxidative stress, and inflammatory responses by targeting Sema3A[J]. J Cell Physiol, 2019, 234(11): 20869-20878. |
23 | 陈朝琴, 薛治乾, 李文霞. miR-15b-5p靶向SGK1对高糖诱导小鼠足细胞损伤的影响[J]. 中国老年学杂志, 2021, 41(9): 1913-1918. |
24 | ZHAO T T, JIN Q S, KONG L L, et al. microRNA-15b-5p shuttled by mesenchymal stem cell-derived extracellular vesicles protects podocytes from diabetic nephropathy via downregulation of VEGF/PDK4 axis[J]. J Bioenerg Biomembr, 2022, 54(1): 17-30. |
25 | DUAN Y R, CHEN B P, CHEN F, et al. Exosomal microRNA-16-5p from human urine-derived stem cells ameliorates diabetic nephropathy through protection of podocyte[J]. J Cell Mol Med, 2021, 25(23): 10798-10813. |
26 | LIU Y S, LI H Z, LIU J T, et al. Variations in microRNA-25 expression influence the severity of diabetic kidney disease[J].J Am Soc Nephrol,2017,28(12): 3627-3638. |
27 | ZHAO B H, LI H Z, LIU J T, et al. microRNA-23b targets ras GTPase-activating protein SH3 domain-binding protein 2 to alleviate fibrosis and albuminuria in diabetic nephropathy[J].J Am Soc Nephrol,2016,27(9): 2597-2608. |
28 | 朱 妤, 王晶晶, 吴 芳. miR-150-5p在糖尿病肾病模型小鼠肾组织中的表达和对小鼠足细胞MPC5损伤的影响及其机制[J].吉林大学学报(医学版),2022,48(1): 44-51. |
29 | CHEN J F, XU Q, ZHANG W, et al. miR-203-3p inhibits the oxidative stress, inflammatory responses and apoptosis of mice podocytes induced by high glucose through regulating Sema3A expression[J]. Open Life Sci, 2020, 15(1): 939-950. |
30 | JIN J, WANG Y G, ZHAO L, et al. Exosomal miRNA-215-5p derived from adipose-derived stem cells attenuates epithelial-mesenchymal transition of podocytes by inhibiting ZEB2 [J]. Biomed Res Int, 2020, 2020: 2685305. |
31 | XU Y X, ZHANG J Z, FAN L, et al. miR-423-5p suppresses high-glucose-induced podocyte injury by targeting Nox4[J]. Biochem Biophys Res Commun, 2018, 505(2): 339-345. |
32 | YAO T, ZHA D Q, GAO P, et al. miR-874 alleviates renal injury and inflammatory response in diabetic nephropathy through targeting toll-like receptor-4[J]. J Cell Physiol, 2018, 234(1): 871-879. |
33 | ZHOU Z M, WAN J, HOU X Y, et al. microRNA-27a promotes podocyte injury via PPARγ-mediated β-catenin activation in diabetic nephropathy[J]. Cell Death Dis, 2017, 8(3): e2658. |
34 | LIANG Y R, LIU H, ZHU J M, et al. Inhibition of p53/miR-34a/SIRT1 axis ameliorates podocyte injury in diabetic nephropathy[J]. Biochem Biophys Res Commun, 2021, 559: 48-55. |
35 | 王蕴倩, 薛 磊, 李慧聪, 等. miR-92a-3p靶向GPR124调控糖尿病肾病足细胞损伤的机制[J]. 中国老年学杂志, 2019, 39(19): 4789-4793. |
36 | LIU F X, GUO J, QIAO Y J, et al. miR-138 plays an important role in diabetic nephropathy through SIRT1-p38-TTP regulatory axis[J].J Cell Physiol,2021,236(9): 6607-6618. |
37 | WANG X L, GAO Y B, YI W M, et al. Inhibition of miRNA-155 alleviates high glucose-induced podocyte inflammation by targeting SIRT1 in diabetic mice[J]. J Diabetes Res, 2021, 2021: 5597394. |
38 | 高 飞, 张欣欣, 杨 冰, 等. 微小RNA-193a调控Wilms瘤基因1促进小鼠糖尿病肾病足细胞凋亡[J]. 解剖学报, 2021, 52(5): 728-736. |
39 | ZHA F F, BAI L, TANG B, et al. microRNA-503 contributes to podocyte injury via targeting E2F3 in diabetic nephropathy[J]. J Cell Biochem, 2019,120(8): 12574-12581. |
40 | WANG L, LI H. miR-770-5p facilitates podocyte apoptosis and inflammation in diabetic nephropathy by targeting TIMP3[J].Biosci Rep,2020,40(4):BSR20193653. |
41 | GUO J J, HAN J, LIU J Y, et al. microRNA-770-5p contributes to podocyte injury via targeting E2F3 in diabetic nephropathy[J]. Rev Bras De Pesquisas Med E Biol, 2020, 53(9): e9360. |
42 | LONG B D, WAN Y, ZHANG S Q, et al. LncRNA XIST protects podocyte from high glucose-induced cell injury in diabetic nephropathy by sponging miR-30 and regulating AVEN expression[J]. Arch Physiol Biochem, 2023, 129(3): 610-617. |
[1] | . Research progress in effect of miRNA on podocyte injury in diabetic nephropathy and its mechanism [J]. Journal of Jilin University(Medicine Edition), 0, (): 1685-1690. |
[2] | MENGGENTUOYA, Xiangzhen YUAN, Xiaojiang XIE, Ling CHENG, Miao LIU. Improvement effect of glucagon-like peptide-1 receptor agonist on injury of cardiomyocytes in rats in hyperglycemia and hyperlipidemia environment and its iron death mechanism [J]. Journal of Jilin University(Medicine Edition), 2023, 49(4): 823-831. |
[3] | Bingxue QI,Yangwei WANG,Yixian ZHANG,Jingbo ZHAO,Yan MA,Yadong SUN. Ameliorative effect of liraglutide on renal function and podocyte injury of rats with diabetic nephropathy and its mechanism [J]. Journal of Jilin University(Medicine Edition), 2022, 48(2): 331-339. |
[4] | Bingxue QI,Yan MA,Yixian ZHANG,Yadong SUN,Lining MIAO. Effect of liraglutide on expressions of mRNA and protein of related proteins after podocyte injury induced by high glucose and its mechanism [J]. Journal of Jilin University(Medicine Edition), 2021, 47(2): 275-283. |
[5] | QU Meng, YU Chunyan, WENG Shiya, GAO Runze, WANG Zhenxia, SONG Yu, LI Xushen, ZHENG Hong, YIN Hanyu, DONG Zhiheng. Effect of Schisandrae Chinensis extracts on expressions of NOX2 and p47phox in myocardium tissue of diabetic rats [J]. Journal of Jilin University(Medicine Edition), 2020, 46(05): 1029-1035. |
[6] | ZHANG Li, CUI Xiaoqian, SHANG Yunlong, CHENG Yuanjuan, SONG Debiao. Multiple organ dysfunction syndrome caused by diabetic ketoacidosis combined with hyperglycemic hyperosmolar state:A case report and literature review [J]. Journal of Jilin University(Medicine Edition), 2020, 46(05): 1070-1073. |
[7] | LIAO Xin, DENG Fanqu, SONG Meihui, GAO Lin, ZHANG Han, ZHANG Lin, WANG Xuemei, ZHANG Ying, ZHAO Yu. Relationship between serum levels of CTRP3, 25(OH)D and insulin resistance in individuals with different glucose metabolism states [J]. Journal of Jilin University(Medicine Edition), 2019, 45(04): 887-892. |
[8] | ZHANG Shuxia, HUO Wenbo, SU Ying, LI Zhen, TIAN Jing, WANG Caixia, SUN Chengbo, ZOU Yinggang, YU Xiaoyan. Effect of herba artemisiae capillaris extracts on PTEN protein expression in kidney tissue of diabetic rats and its protective effect on kidney [J]. Journal of Jilin University(Medicine Edition), 2019, 45(04): 779-783. |
[9] | CUI Qi, WANG Manyi, NONG Linlin, ZHAI Xiaoya, FENG Leping. Effect of NMN on renal fibrosis of diabetic nephropathy rats and its mechanism [J]. Journal of Jilin University(Medicine Edition), 2018, 44(06): 1156-1162. |
[10] | SUN Chengbo, SUN Bo, LIU Chunyu, LI Xingru, WANG Zhiqin, ZHANG Jingyi, ZHANG Xuemian, WANG Zehong, YU Xiaoyan. Effect of herba artemisiae capillaris extracts on expression profile of miRNAs in kidney tissue of diabetic rats and its protective effect on kidney [J]. Journal of Jilin University Medicine Edition, 2018, 44(03): 493-498. |
[11] | YANG Jianghui, SUN Chengbo, GENG Jianan, LI Jiujie, ZHU Yao, CHEN Xingxing, CHEN Antian, YU Xiaoyan. Effect of extract of Schisandra chinensis on expression of matrix metalloproteinase in kidney tissue of diabetic rats and its protective effect on kidney tissue [J]. Journal of Jilin University Medicine Edition, 2017, 43(03): 512-517. |
[12] | PANG Zi-qian, YE Yu-qin, LI Qiu-ming. Application values of electromyography in diagnosis and differential diagnosis of diabetic polyneuropathy and alcoholic peripheral neuropathy [J]. Journal of Jilin University Medicine Edition, 2014, 40(06): 1247-1251. |
[13] | JIN Zhi-sheng,ZHU Zhen-ling,WEI Yu-jiao,ZHENG Li-hong,GUAN Yan,QI Xue-yan. Influence of hedysaryum polysaccharide in kidney function and expressions of Glut-1 mRNA and protein in kidney tissue of db/db mice with diabetic nephropathy [J]. Journal of Jilin University Medicine Edition, 2014, 40(03): 519-524. |
[14] | ZHAO Jin-xiang1,ZHAO Li-yan2,WANG Xiu-ge1,GOU Lin-hua1,NAN Zheng1. Effects of JieDu TongLuo BaoShen capsule on serum adiponectin and expression levels of adiponectin and MCP-1 proteins in kidney tissue of type 2 diabetic rats [J]. Journal of Jilin University Medicine Edition, 2014, 40(01): 65-69. |
[15] | TONG Guang-hui1|TONG Wei-wei1|MA Li2|LIU Yong1. Effects of glucose and insulin on |production of solubility endothelial cell protein C receptor in human umbilical vein endothelial cells [J]. J4, 2011, 37(5): 851-854. |
|