Journal of Jilin University(Medicine Edition) ›› 2025, Vol. 51 ›› Issue (5): 1429-1436.doi: 10.13481/j.1671-587X.20250533
• Review • Previous Articles
Huan WANG,Yu ZHEN,Shanshan LI(
)
Received:2024-09-16
Accepted:2024-10-17
Online:2025-09-28
Published:2025-11-05
Contact:
Shanshan LI
E-mail:shansalee@163.com
CLC Number:
Huan WANG,Yu ZHEN,Shanshan LI. Research progress in effect of cutaneous tissue-resident memory T cells on development and recurrence of vitiligo[J].Journal of Jilin University(Medicine Edition), 2025, 51(5): 1429-1436.
| [1] | FRISOLI M L, ESSIEN K, HARRIS J E. Vitiligo: mechanisms of pathogenesis and treatment[J]. Annu Rev Immunol, 2020, 38: 621-648. |
| [2] | CAVALIÉ M, EZZEDINE K, FONTAS E, et al. Maintenance therapy of adult vitiligo with 0.1% tacrolimus ointment: a randomized, double blind, placebo-controlled study[J]. J Invest Dermatol, 2015, 135(4): 970-974. |
| [3] | CHRISTO S N, PARK S L, MUELLER S N, et al. The multifaceted role of tissue-resident memory T cells[J]. Annu Rev Immunol, 2024, 42(1): 317-345. |
| [4] | RYAN G E, HARRIS J E, RICHMOND J M. Resident memory T cells in autoimmune skin diseases[J]. Front Immunol, 2021, 12: 652191. |
| [5] | RIDING R L, HARRIS J E. The role of memory CD8+ T cells in vitiligo[J]. J Immunol, 2019, 203(1): 11-19. |
| [6] | MIGAYRON L, MERHI R, SENESCHAL J, et al. Resident memory T cells in nonlesional skin and healed lesions of patients with chronic inflammatory diseases: Appearances can be deceptive[J]. J Allergy Clin Immunol, 2024, 153(3): 606-614. |
| [7] | SKON C N, LEE J Y, ANDERSON K G, et al. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells[J]. Nat Immunol, 2013, 14(12): 1285-1293. |
| [8] | ZITTI B, HOFFER E, ZHENG W N, et al. Human skin-resident CD8+ T cells require RUNX2 and RUNX3 for induction of cytotoxicity and expression of the integrin CD49a[J]. Immunity, 2023, 56(6): 1285-1302.e7. |
| [9] | YANG K, KALLIES A. Tissue-specific differentiation of CD8+ resident memory T cells[J]. Trends Immunol, 2021, 42(10): 876-890. |
| [10] | ZAID A, HOR J L, CHRISTO S N, et al. Chemokine receptor-dependent control of skin tissue-resident memory T cell formation[J]. J Immunol, 2017, 199(7): 2451-2459. |
| [11] | TOKURA Y, PHADUNGSAKSAWASDI P, KURIHARA K, et al. Pathophysiology of skin resident memory T cells[J]. Front Immunol, 2021, 11: 618897. |
| [12] | SRIVASTAVA R, HERNÁNDEZ-RUIZ M, KHAN A A, et al. CXCL17 chemokine-dependent mobilization of CXCR8+CD8+ effector memory and tissue-resident memory T cells in the vaginal mucosa is associated with protection against genital herpes[J]. J Immunol, 2018, 200(8): 2915-2926. |
| [13] | FONSECA R, BEURA L K, QUARNSTROM C F, et al. Developmental plasticity allows outside-in immune responses by resident memory T cells[J]. Nat Immunol, 2020, 21(4): 412-421. |
| [14] | KLICZNIK M M, MORAWSKI P A, HÖLLBACHER B, et al. Human CD4+CD103+ cutaneous resident memory T cells are found in the circulation of healthy individuals[J]. Sci Immunol, 2019, 4(37): eaav8995. |
| [15] | BEHR F M, PARGA-VIDAL L, KRAGTEN N A M, et al. Tissue-resident memory CD8+ T cells shape local and systemic secondary T cell responses[J]. Nat Immunol, 2020, 21(9): 1070-1081. |
| [16] | KOK L, MASOPUST D, SCHUMACHER T N. The precursors of CD8+ tissue resident memory T cells: from lymphoid organs to infected tissues[J]. Nat Rev Immunol, 2022, 22(5): 283-293. |
| [17] | MATOS T R, GEHAD A, TEAGUE J E, et al. Central memory T cells are the most effective precursors of resident memory T cells in human skin[J]. Sci Immunol, 2022, 7(70): eabn1889. |
| [18] | FRIZZELL H, FONSECA R, CHRISTO S N, et al. Organ-specific isoform selection of fatty acid-binding proteins in tissue-resident lymphocytes[J]. Sci Immunol, 2020, 5(46): eaay9283. |
| [19] | CROWL J T, HEEG M, FERRY A, et al. Tissue-resident memory CD8+ T cells possess unique transcriptional, epigenetic and functional adaptations to different tissue environments[J]. Nat Immunol, 2022, 23(7): 1121-1131. |
| [20] | ADACHI T, KOBAYASHI T, SUGIHARA E, et al. Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma[J]. Nat Med, 2015, 21(11): 1272-1279. |
| [21] | REN H M, LUKACHER A E. IL-21 in homeostasis of resident memory and exhausted CD8 T cells during persistent infection[J]. Int J Mol Sci, 2020, 21(18): 6966. |
| [22] | THOMPSON E A, DARRAH P A, FOULDS K E, et al. Monocytes acquire the ability to prime tissue-resident T cells via IL-10-mediated TGF-β release[J]. Cell Rep, 2019, 28(5): 1127-1135.e4. |
| [23] | CHRISTO S N, EVRARD M, PARK S L, et al. Discrete tissue microenvironments instruct diversity in resident memory T cell function and plasticity[J]. Nat Immunol, 2021, 22(9): 1140-1151. |
| [24] | DIJKGRAAF F E, KOK L, SCHUMACHER T N M. Formation of tissue-resident CD8+ T-cell memory[J]. Cold Spring Harb Perspect Biol, 2021, 13(8): a038117. |
| [25] | IBORRA S, MARTÍNEZ-LÓPEZ M, KHOUILI S C, et al. Optimal generation of tissue-resident but not circulating memory T cells during viral infection requires crosspriming by DNGR-1+ dendritic cells[J]. Immunity, 2016, 45(4): 847-860. |
| [26] | JARJOUR N N, DALZELL T S, MAURICE N J, et al. Collaboration between interleukin-7 and-15 enables adaptation of tissue-resident and circulating memory CD8+ T cells to cytokine deficiency[J]. Immunity, 2025, 58(3): 616-631.e5. |
| [27] | DUHEN T, GEIGER R, JARROSSAY D, et al. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells[J]. Nat Immunol, 2009, 10(8): 857-863. |
| [28] | WHITLEY S K, LI M S, KASHEM S W, et al. Local IL-23 is required for proliferation and retention of skin-resident memory TH17 cells[J]. Sci Immunol, 2022, 7(77): eabq3254. |
| [29] | CHAMBERS E S, VUKMANOVIC-STEJIC M. Skin barrier immunity and ageing[J]. Immunology, 2020, 160(2): 116-125. |
| [30] | PARK S L, CHRISTO S N, WELLS A C, et al. Divergent molecular networks program functionally distinct CD8+ skin-resident memory T cells[J]. Science, 2023, 382(6674): 1073-1079. |
| [31] | MACKAY L K, MINNICH M, KRAGTEN N A M, et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes[J]. Science, 2016, 352(6284): 459-463. |
| [32] | HARRISON O J, LINEHAN J L, SHIH H Y, et al. Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury[J]. Science, 2019, 363(6422): eaat6280. |
| [33] | CHEUK S, SCHLUMS H, GALLAIS SÉRÉZAL I, et al. CD49a expression defines tissue-resident CD8+ T cells poised for cytotoxic function in human skin[J]. Immunity, 2017, 46(2): 287-300. |
| [34] | JACQUEMIN C, MARTINS C, LUCCHESE F, et al. NKG2D defines a subset of skin effector memory CD8 T cells with proinflammatory functions in vitiligo[J]. J Invest Dermatol, 2020, 140(6): 1143-1153. |
| [35] | RICHMOND J M, STRASSNER J P, RASHIGHI M, et al. Resident memory and recirculating memory T cells cooperate to maintain disease in a mouse model of vitiligo[J]. J Invest Dermatol, 2019, 139(4): 769-778. |
| [36] | SEONG S H, OH S H. Up-and-coming drugs for the treatment of vitiligo[J]. Ann Dermatol, 2024, 36(4): 197-208. |
| [37] | XU Z J, CHEN D M, HU Y C, et al. Anatomically distinct fibroblast subsets determine skin autoimmune patterns[J]. Nature, 2022, 601(7891): 118-124. |
| [38] | RESCHKE R, DEITERT B, ENK A H, et al. The role of tissue-resident memory T cells as mediators for response and toxicity in immunotherapy-treated melanoma-two sides of the same coin?[J]. Front Immunol, 2024, 15: 1385781. |
| [39] | CHEN D M, XU Z J, CUI J, et al. A mouse model of vitiligo based on endogenous auto-reactive CD8 + T cell targeting skin melanocyte[J]. Cell Regen, 2022, 11(1): 31. |
| [40] | KASSAB A, KHALIJ Y, AYED Y, et al. Serum inflammatory and oxidative stress markers in patients with vitiligo[J]. J Clin Med, 2023, 12(18): 5861. |
| [41] | RICHMOND J M, STRASSNER J P, ZAPATA L JR, et al. Antibody blockade of IL-15 signaling has the potential to durably reverse vitiligo[J]. Sci Transl Med, 2018, 10(450): eaam7710. |
| [42] | CHEN X G, GUO W N, CHANG Y Q, et al. Oxidative stress-induced IL-15 trans-presentation in keratinocytes contributes to CD8+ T cells activation via JAK-STAT pathway in vitiligo[J]. Free Radic Biol Med, 2019, 139: 80-91. |
| [43] | LIU H Q, WANG Y H, LE Q Q, et al. The IFN-γ-CXCL9/CXCL10-CXCR3 axis in vitiligo: Pathological mechanism and treatment[J]. Eur J Immunol, 2024, 54(4): e2250281. |
| [44] | AZZOLINO V, ZAPATA L, GARG M, et al. Jak inhibitors reverse vitiligo in mice but do not deplete skin resident memory T cells[J]. J Invest Dermatol, 2021, 141(1): 182-184. |
| [45] | YAMAGUCHI Y, PEEVA E, DEL DUCA E, et al. Ritlecitinib, a JAK3/TEC family kinase inhibitor, stabilizes active lesions and repigments stable lesions in vitiligo[J]. Arch Dermatol Res, 2024, 316(7): 478. |
| [46] | GUTTMAN-YASSKY E, DEL DUCA E, ROSA J C DA, et al. Improvements in immune/melanocyte biomarkers with JAK3/TEC family kinase inhibitor ritlecitinib in vitiligo[J]. J Allergy Clin Immunol, 2024, 153(1): 161-172. |
| [47] | YOKOI K, WATANABE R, KUME M, et al. Melanocyte-specific CD49a+CD8+ T cells in vitiligo lesion potentiate to maintain activity during systemic steroid therapy[J]. J Dermatol, 2023, 50(5): 710-714. |
| [48] | XU Y L, ZHANG B X, LIN M, et al. Discovery of resident memory T cells in inflammatory vitiligo: a case report[J]. Medicine, 2022, 101(41): e31007. |
| [49] | OKAMURA K, KABASAWA T, SAITO T, et al. Resident memory T cell contributes to the phenotype of inflammatory vitiligo[J]. J Dermatol Sci, 2024, 113(2): 74-76. |
| [50] | BONIFACE K, SENESCHAL J. Vitiligo as a skin memory disease: The need for early intervention with immunomodulating agents and a maintenance therapy to target resident memory T cells[J]. Exp Dermatol, 2019, 28(6): 656-661. |
| [51] | TANG Q, FAKIH H H, ZAIN UI ABIDEEN M, et al. Rational design of a JAK1-selective siRNA inhibitor for the modulation of autoimmunity in the skin[J]. Nat Commun, 2023, 14(1): 7099. |
| [52] | TURNER D L, FARBER D L. Mucosal resident memory CD4 T cells in protection and immunopathology[J]. Front Immunol, 2014, 5: 331. |
| [53] | WU X P, CHEONG L Y, YUAN L, et al. Islet-resident memory T cells orchestrate the immunopathogenesis of type 1 diabetes through the FABP4-CXCL10 axis[J]. Adv Sci, 2024, 11(30): 2308461. |
| [54] | MAJID I, IMRAN S, BATOOL S. Apremilast is effective in controlling the progression of adult vitiligo: a case series[J]. Dermatol Ther, 2019, 32(4): e12923. |
| [55] | WEI Y J, WANG T M, NIE X Q, et al. 1, 25-dihydroxyvitamin D3 provides benefits in vitiligo based on modulation of CD8+ T cell glycolysis and function[J]. Nutrients, 2023, 15(21): 4697. |
| [56] | ALI N W, ZIRAK B, RODRIGUEZ R S, et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation[J]. Cell, 2017, 169(6): 1119-1129.e11. |
| [57] | TANIMURA S, TADOKORO Y, INOMATA K, et al. Hair follicle stem cells provide a functional niche for melanocyte stem cells[J]. Cell Stem Cell, 2011, 8(2): 177-187. |
| [58] | LIU Z, HU X T, LIANG Y Q, et al. Glucocorticoid signaling and regulatory T cells cooperate to maintain the hair-follicle stem-cell niche[J]. Nat Immunol, 2022, 23(7): 1086-1097. |
| [59] | SHAH F, GIRI P S, BHARTI A H, et al. Compromised melanocyte survival due to decreased suppression of CD4+ & CD8+ resident memory T cells by impaired TRM-regulatory T cells in generalized vitiligo patients[J]. Exp Dermatol, 2024, 33(1): e14982. |
| [1] | Hongli LI,Mengyao WANG,Yangyang LIU,Hui ZHANG,Li LI. Effect of KHSRP on biological behavior of colorectal cancer cells through activation of JAK/STAT signaling pathway [J]. Journal of Jilin University(Medicine Edition), 2025, 51(4): 996-1006. |
| [2] | Hanyue LI,Lian YANG,Jianfeng LIU,Shufei ZHANG,Li HONG. Effect of bone marrow mesenchymal stem cells of mice on proliferation and collagen expression levels of fibroblasts through JAK2/STAT3 signaling pathway [J]. Journal of Jilin University(Medicine Edition), 2025, 51(2): 325-332. |
| [3] | Sumei WANG,Nan WANG,Zhen YU,Jinjuan ZHANG,Jiandong ZHANG. Diagnostic values of APRI, AAR, and FIB-4 predictive models in autoimmune cirrhosis combined with esophagogastric fundal varices [J]. Journal of Jilin University(Medicine Edition), 2024, 50(2): 523-528. |
| [4] | Peng QI,Xianying MENG,Meihua PIAO,Qiang ZHANG. Network Meta-analysis on risk factors of recurrence of papillary thyroid microcarcinoma [J]. Journal of Jilin University(Medicine Edition), 2023, 49(6): 1504-1512. |
| [5] | Hongying LI,Chenyan WANG,Shichao GUO,Youwei ZHAO,Yanbo DONG,Jiancheng HUANG. Effect of down-regulation of miR-320a expression on proliferation and apoptosis of cardiomyocytes induced by hypoxia/reoxygenation [J]. Journal of Jilin University(Medicine Edition), 2023, 49(4): 958-967. |
| [6] | Haitao LI, Qin LI, Fei CAI, Guofu HU, Yunfei TENG. Effect of apigenin on polarization and inflammation of mouse RAW264.7 macrophages and its mechanism [J]. Journal of Jilin University(Medicine Edition), 2023, 49(3): 549-556. |
| [7] | Rongxia JIA,Xu ZHOU,Zhikun SHI,Meijing BAO,Guanqun WANG,Yuqing CHU,Yang JIN,Yang LIN. Recurrent vulvar angiomyofibroblastoma :A case report and literature review [J]. Journal of Jilin University(Medicine Edition), 2023, 49(1): 193-197. |
| [8] | Pengxiang HUI,Xiao YANG,Xu WANG,Ming ZHANG,Haitao FAN,Huikang YU,Yinchun WANG,Qun ZHAO,Gaowen TANG,Ranwei LI. Renal solitary fibrous tumor complicated with hydronephrosis: A case report and literature review [J]. Journal of Jilin University(Medicine Edition), 2022, 48(6): 1593-1598. |
| [9] | Yunhe GAO,Jianan YAO,Lanqing CAO,Chuanjie XU. Clinicopathological characteristics and analysis on prognostic factors of patients with solitary fibrous tumors in different sites [J]. Journal of Jilin University(Medicine Edition), 2022, 48(6): 1510-1517. |
| [10] | Lu REN,Qinxue CAO,Shaoqin YANG. Effects of ganoderma lucidum ethanol extract on biological behavior and JAK1/STAT3 signaling pathway of cervical cancer cells [J]. Journal of Jilin University(Medicine Edition), 2022, 48(6): 1474-1480. |
| [11] | Yujun YUAN,Xiuling YANG,Zhijian HU,Sumei ZHANG. Effects of traditional Chinese medicine indirubin derivative E804 on proliferation, apoptosis and differentiation of lung cancer A549 cells and its mechanism [J]. Journal of Jilin University(Medicine Edition), 2022, 48(5): 1276-1283. |
| [12] | Lina SONG,Chunyue WU,Qingyan QIN,Tianshu CHU,Qilin LIU. Familial multiple odontogenic keratocysts:A report of two cases and literature review [J]. Journal of Jilin University(Medicine Edition), 2022, 48(4): 1035-1039. |
| [13] | Wei WANG,Baisong LIN,Haixing LIAN,Xudong GUO,Chen CHEN,Xiuhe ZHANG. Atypical bilocular myxoma:A case report and literature review [J]. Journal of Jilin University(Medicine Edition), 2022, 48(2): 500-504. |
| [14] | Wenxiong SUN,Pu LI. Expression of SOCS3 in peripheral blood mononuclear cells of patients with diffuse large B-cell lymphoma and its effect on autophagy and apoptosis of OCI-LY7 cells [J]. Journal of Jilin University(Medicine Edition), 2022, 48(1): 172-179. |
| [15] | Jia FENG, Haichan XU, Jian WEN, Zehua WU, Yi CHEN. Effect of betulinic acid on proliferation and apoptosis of myeloma cells by regulating JAK2/STAT3 signaling pathway and its mechanism [J]. Journal of Jilin University(Medicine Edition), 2021, 47(3): 615-622. |
|
||