[1] Agarwal S, Bell CM, Taylor SM, et al. p53 deletion or hot-spot mutations enhance mTORC1 activity by altering lysosomal dynamics of TSC2 and Rheb[J]. Mol Cancer Res, 2016, 14(1):66-77. [2] Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health:a lifeguard with a licenceto kill[J]. Nat Rev Mol Cell Biol, 2015, 16(7):393-405. [3] Song Z, Han X, Shen L, et al. PTEN silencing enhances neuronal proliferation and differentiation by activating PI3K/Akt/GSK3β pathway in vitro [J]. Exp Cell Res, 2018, 4827(18):30001-30006. [4] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6069):816-821. [5] Chou WC, Lin PH, Yeh YC,et al. Genes involved in angiogenesis and mTOR pathways are frequently mutated in Asian patients with pancreatic neuroendocrine tumors[J]. Int J Biol Sci, 2016, 12(12):1523-1532. [6] Zhang Z, Zhang Y, Gao F, et al. CRISPR-Cas9 Genome-Editing System in Human Stem Cells:Current Status and Future Prospects[J]. Mol Ther Nucleic Acids, 2017, 15(9):230-241. [7] Cribbs AP, Perera SMW. Science and bioethics of CRISPR-Cas9 gene editing:an analysis towards separating facts and fiction[J]. Yale J Biol Med, 2017, 90(4):625-634. [8] Sánchez-Rivera FJ, Jacks T. Applications of the CRISPR-Cas9 system in cancer biology[J]. Nat Rev Cancer, 2015, 15(7):387-395. [9] Korkmaz G, Lopes R, Ugalde AP. Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9[J]. Nat Biotechnol, 2016, 34(2):192-198. [10] Abbasi F, Miyata H, Ikawa M. Revolutionizing male fertility factor research in mice by using the genome editing tool CRISPR-Cas9[J]. Reprod Med Biol, 2017, 17(1):3-10. [11] Bhat SA, Malik AA, Ahmad SM, et al. Advances in genome editing for improved animal breeding:A review[J]. Vet World, 2017, 10(11):1361-1366. [12] Xue W, Chen SD, Yin H. CRISPR-mediated direct mutation of cancer genes in the mouse liver[J]. Nature, 2014, 514(7522):380-384. [13] Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823. [14] de Lecuona I, Casado M, Marfany G, et al. Gene editing in humans:towards a global and inclusive debate for responsible research[J].Yale J Biol Med, 2017, 90(4):673-681. [15] Wyvekens N, Tsai SQ, Joung JK. Genome editing in human cell using CRISPR/Cas nucleases[J]. Curr Protoc Mol Biol, 2015, 112:31-33. [16] Wang X, Huang X, Fang X,et al. CRISPR-Cas9 system as a versatile tool for genome engineering in human cells[J]. Mol Ther Nucleic Acids, 2016, 5(11):388-395. [17] Ma D, Liu F. Genome editing and its applications in model organisms[J]. Genomics Proteomics Bioinformatics, 2015, 13(6):336-344. [18] Pan Y, Bush EC, Toonen JA, et al. Whole tumor RNA-sequencing and deconvolution reveal a clinically-prognostic PTEN/PI3K-regulated glioma transcriptional signature[J]. Oncotarget, 2017, 8(32):52474-52487. [19] Sun MM, Zhang MZ, Chen Y, et al. Effect of PTEN antisense oligonucleotide on oesophageal squamous cell carcinoma cell lines[J]. J Int Med Res, 2012, 40(6):2098-2108. [20] Contractor T, Harris CR. p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2[J]. Cancer Res, 2012, 72(2):560-567. [21] Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health:a lifeguard with a licence to kill[J]. Nat Rev Mol Cell Biol, 2015, 16(7):393-405. [22] Heckl D, Kowalczyk MS, Yudovich D, et al. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing[J]. Nat Biotechnol, 2014, 32(9):941-946. [23] Luo J. CRISPR/Cas9:from genome engineering to cancer drug discovery[J]. Trends Cancer, 2016, 2(6):313-324. |