Journal of Jilin University(Medicine Edition) ›› 2025, Vol. 51 ›› Issue (4): 1129-1136.doi: 10.13481/j.1671-587X.20250430
• Review • Previous Articles
Ziyang XU,Ruolin WANG,Yifan GUO,Yuji LIU,Min LIU(
)
Received:2024-03-28
Accepted:2024-05-28
Online:2025-07-28
Published:2025-08-25
Contact:
Min LIU
E-mail:liu_min99@jlu.edu.cn
CLC Number:
Ziyang XU,Ruolin WANG,Yifan GUO,Yuji LIU,Min LIU. Research progress in mechanism of antimicrobial action of zinc oxide nanoparticles and its influencing factors[J].Journal of Jilin University(Medicine Edition), 2025, 51(4): 1129-1136.
| [1] | KIM H K, THAMMAVONGSA V, SCHNEEWIND O, et al. Recurrent infections and immune evasion strategies of Staphylococcus aureus[J]. Curr Opin Microbiol, 2012, 15(1): 92-99. |
| [2] | LALLO DA SILVA B, ABUÇAFY M P, BERBEL MANAIA E, et al. Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: an overview[J]. Int J Nanomedicine, 2019, 14: 9395-9410. |
| [3] | MOHAPATRA B, CHOUDHARY S, MOHAPATRA S, et al. Facile preparation and antibacterial activity of zinc oxide nanobullets[J]. Mater Today Commun, 2023, 34: 105083. |
| [4] | RUDDARAJU L K, PAMMI S N, PALLELA P N V K, et al. Antibiotic potentiation and anti-cancer competence through bio-mediated ZnO nanoparticles[J]. Mater Sci Eng C Mater Biol Appl, 2019, 103: 109756. |
| [5] | REDDY L S, NISHA M M, JOICE M, et al. Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae[J]. Pharm Biol, 2014, 52(11): 1388-1397. |
| [6] | JIANG S J, LIN K L, CAI M. ZnO nanomaterials: current advancements in antibacterial mechanisms and applications[J]. Front Chem, 2020, 8: 580. |
| [7] | ZHANG L L, JIANG Y H, DING Y L, et al. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids)[J]. J Nanopart Res, 2007, 9(3): 479-489. |
| [8] | QUEK J A, LAM S M, SIN J C, et al. Visible light responsive flower-like ZnO in photocatalytic antibacterial mechanism towards Enterococcus faecalis and Micrococcus luteus[J]. J Photochem Photobiol B, 2018, 187: 66-75. |
| [9] | KIM H R, LEE D, LEE G H, et al. Origin of antibacterial activity of ZnO nanoparticles: the roles of protonic and electronic conductions[J]. Part Part Syst Charact, 2019, 36(9): 1900141. |
| [10] | LEUNG Y H, XU X Y, MA A P Y, et al. Toxicity of ZnO and TiO2 to escherichia coli cells[J]. Sci Rep, 2016, 6: 35243. |
| [11] | JEONG E, KIM C U, BYUN J, et al. Quantitative evaluation of the antibacterial factors of ZnO nanorod arrays under dark conditions: Physical and chemical effects on Escherichia coli inactivation[J]. Sci Total Environ, 2020, 712: 136574. |
| [12] | JOE A, PARK S H, SHIM K D, et al. Antibacterial mechanism of ZnO nanoparticles under dark conditions[J]. J Ind Eng Chem, 2017, 45: 430-439. |
| [13] | MOHD YUSOF H, MOHAMAD R, ZAIDAN U H, et al. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review[J]. J Anim Sci Biotechnol, 2019, 10: 57. |
| [14] | DEVULAPALLE K S, MOOSER G. Subsite specificity of the active site of glucosyltransferases from Streptococcus sobrinus[J]. J Biol Chem, 1994, 269(16): 11967-11971. |
| [15] | KRISHNAMOORTHY R, ATHINARAYANAN J, PERIYASAMY V S, et al. Antibacterial mechanisms of zinc oxide nanoparticle against bacterial food pathogens resistant to beta-lactam antibiotics[J]. Molecules, 2022, 27(8): 2489. |
| [16] | KASEMETS K, IVASK A, DUBOURGUIER H C, et al. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast saccharomyces cerevisiae[J]. Toxicol In Vitro, 2009, 23(6): 1116-1122. |
| [17] | PASQUET J, CHEVALIER Y, PELLETIER J, et al. The contribution of zinc ions to the antimicrobial activity of zinc oxide[J]. Colloids Surf A Physicochem Eng Aspects, 2014, 457: 263-274. |
| [18] | LEUNG Y H, CHAN C N, NG A M C, et al. Antibacterial activity of ZnO nanoparticles with a modified surface under ambient illumination[J]. Nanotechnology, 2012, 23(47): 475703. |
| [19] | KADIYALA U, TURALI-EMRE E S, BAHNG J H, et al. Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus (MRSA)[J]. Nanoscale, 2018, 10(10): 4927-4939. |
| [20] | ZANNI E, CHANDRAIAHGARI C R, DE BELLIS G, et al. Zinc oxide nanorods-decorated graphene nanoplatelets: a promising antimicrobial agent against the cariogenic bacterium streptococcus mutans[J]. Nanomaterials (Basel), 2016, 6(10): 179. |
| [21] | FATEHAH M O, AZIZ H A, STOLL S. Stability of ZnO nanoparticles in solution. influence of pH, dissolution, aggregation and disaggregation effects[J]. J Coll Sci Biotechnol, 2014, 3(1): 75-84. |
| [22] | BRAYNER R, FERRARI-ILIOU R, BRIVOIS N, et al. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium[J]. Nano Lett, 2006, 6(4): 866-870. |
| [23] | LALLO DA SILVA B, CAETANO B L, CHIARI-ANDRÉO B G, et al. Increased antibacterial activity of ZnO nanoparticles: influence of size and surface modification[J]. Colloids Surf B Biointerfaces, 2019, 177: 440-447. |
| [24] | LI J, ZHANG Q, XU M J, et al. Antimicrobial efficacy and cell adhesion inhibition of in situ synthesized ZnO nanoparticles/polyvinyl alcohol nanofibrous membranes[J]. Adv Condens Matter Phys, 2016, 2016: 6394124. |
| [25] | EMAMI-KARVANI Z. Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria[J]. Afr J Microbiol Res, 2012, 5(18): 319-324. |
| [26] | ALI A, AMBREEN S, JAVED R, et al. ZnO nanostructure fabrication in different solvents transforms physio-chemical, biological and photodegradable properties[J]. Mater Sci Eng C Mater Biol Appl, 2017, 74: 137-145. |
| [27] | JIANG Y H, ZHANG L L, WEN D S, et al. Role of physical and chemical interactions in the antibacterial behavior of ZnO nanoparticles against E. coli [J]. Mater Sci Eng C Mater Biol Appl, 2016, 69: 1361-1366. |
| [28] | LI J, TAN L, LIU X M, et al. Balancing bacteria-osteoblast competition through selective physical puncture and biofunctionalization of ZnO/polydopamine/arginine-glycine-aspartic acid-cysteine nanorods[J]. ACS Nano, 2017, 11(11): 11250-11263. |
| [29] | HUANG Z B, ZHENG X, YAN D H, et al. Toxicological effect of ZnO nanoparticles based on bacteria[J]. Langmuir, 2008, 24(8): 4140-4144. |
| [30] | 周诗雨, 杜 芹. 纳米氧化锌的抗菌活性及其在口腔材料中的研究进展[J]. 成都医学院学报, 2023, 18(1): 132-136. |
| [31] | OHIRA T, YAMAMOTO O. Correlation between antibacterial activity and crystallite size on ceramics[J]. Chem Eng Sci, 2012, 68(1): 355-361. |
| [32] | SHARMILA G, MUTHUKUMARAN C, SANDIYA K, et al. Biosynthesis, characterization, and antibacterial activity of zinc oxide nanoparticles derived from Bauhinia tomentosa leaf extract[J]. J Nanostruct Chem, 2018, 8(3): 293-299. |
| [33] | ZHU X Y, WANG J, CAI L, et al. Dissection of the antibacterial mechanism of zinc oxide nanoparticles with manipulable nanoscale morphologies[J]. J Hazard Mater, 2022, 430: 128436. |
| [34] | DAR M R, KHAN A K, INAM M, et al. Differential impact of zinc salt precursors on physiognomies, anticancerous, and antibacterial activities of zinc oxide nanoparticles[J]. Appl Biochem Biotechnol, 2024, 196(8): 4874-4899. |
| [35] | QUANG N X, LUYEN NTHI, THI HUE N, et al. Formation and antibacterial activity of heterogeneous zinc oxide nanoparticles greenly synthesized by the electrochemical method under microwave treatment[J]. Colloids Surf A Physicochem Eng Aspects, 2023, 674: 131906. |
| [36] | ABEBE B, ZEREFFA E A, TADESSE A, et al. A review on enhancing the antibacterial activity of ZnO: mechanisms and microscopic investigation[J]. Nanoscale Res Lett, 2020, 15(1): 190. |
| [37] | SAHA R K, DEBANATH M K, PAUL B, et al. Antibacterial and nonlinear dynamical analysis of flower and hexagon-shaped ZnO microstructures[J]. Sci Rep, 2020, 10(1): 2598. |
| [38] | PAL S, TAK Y K, SONG J M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli[J]. Appl Environ Microbiol, 2007, 73(6): 1712-1720. |
| [39] | ZHOU Y, GUO Y F, LI J Y, et al. Excellent antibacterial activities in the dark of ZnO nanoflakes with oxygen vacancies on exposed{2̄̄0}facets[J]. J Mater Chem A, 2020, 8(23): 11511-11514. |
| [40] | YANG H, LIU C, YANG D F, et al. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition[J]. J Appl Toxicol, 2009, 29(1): 69-78. |
| [41] | RAMANI M, PONNUSAMY S, MUTHAMIZHCHELVAN C, et al. Amino acid-mediated synthesis of zinc oxide nanostructures and evaluation of their facet-dependent antimicrobial activity[J]. Colloids Surf B Biointerfaces, 2014, 117: 233-239. |
| [42] | KUMAR, UMAR, KUMAR, et al. Antimicrobial properties of ZnO nanomaterials: a review[J]. Ceram Int, 2017, 43(5): 3940-3961. |
| [43] | ANN L C, MAHMUD S, BAKHORI S K M, et al. Effect of surface modification and UVA photoactivation on antibacterial bioactivity of zinc oxide powder[J]. Appl Surf Sci, 2014, 292: 405-412. |
| [44] | MEHMOOD S, REHMAN M A, ISMAIL H, et al. Significance of postgrowth processing of ZnO nanostructures on antibacterial activity against gram-positive and gram-negative bacteria[J]. Int J Nanomedicine, 2015, 10: 4521-4533. |
| [45] | HSU A, LIU F Z, LEUNG Y H, et al. Is the effect of surface modifying molecules on antibacterial activity universal for a given material?[J]. Nanoscale, 2014, 6(17): 10323-10331. |
| [46] | ČEPIN M, JOVANOVSKI V, PODLOGAR M, et al. Amino- and ionic liquid-functionalised nanocrystalline ZnO via silane anchoring-an antimicrobial synergy[J]. J Mater Chem B, 2015, 3(6): 1059-1067. |
| [47] | SURESH S, SARAVANAN P, JAYAMOORTHY K, et al. Development of silane grafted ZnO core shell nanoparticles loaded diglycidyl epoxy nanocomposites film for antimicrobial applications[J]. Mater Sci Eng C Mater Biol Appl, 2016, 64: 286-292. |
| [48] | ABEBE B, ANANDA MURTHY H C. Insights into ZnO-based doped porous nanocrystal frameworks[J]. RSC Adv, 2022, 12(10): 5816-5833. |
| [49] | LAKSHMI P V, VIJAYARAGHAVAN R. Chemical manipulation of oxygen vacancy and antibacterial activity in ZnO[J]. Mater Sci Eng C Mater Biol Appl, 2017, 77: 1027-1034. |
| [50] | OKEKE I S, AGWU K K, UBACHUKWU A A, et al. Influence of transition metal doping on physiochemical and antibacterial properties of ZnONanoparticles: a review[J]. Appl Surf Sci Adv, 2022, 8: 100227. |
| [51] | ZYOUD S H, HEGAZI O E, ALALALMEH S O, et al. Enhancing antimicrobial and photocatalyst properties of Mg-doped ZnO nanotubes via novel laser-assisted chemical bath synthesis[J]. J Saudi Chem Soc, 2023, 27(6): 101752. |
| [52] | BARUAH S, MAHMOOD M A, MYINT M T Z, et al. Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods[J]. Beilstein J Nanotechnol, 2010, 1: 14-20. |
| [53] | NG Y H, LEUNG Y H, LIU F Z, et al. Antibacterial activity of ZnO nanoparticles under ambient illumination: The effect of nanoparticle properties[J]. Thin Solid Films, 2013, 542: 368-372. |
| [54] | PADMAVATHY N, VIJAYARAGHAVAN R. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study[J]. Sci Technol Adv Mater, 2008, 9(3): 035004. |
| [55] | LI Y C, LIAO C Z, TJONG S C. Recent advances in zinc oxide nanostructures with antimicrobial activities[J]. Int J Mol Sci, 2020, 21(22): 8836. |
| [1] | Lieqian SUN,Mengyu GU,Jie YANG,Kaiyi WANG,Gaoshuai GUO,Hongbo ZHANG,Siyi ZHANG,Tanglong WANG,Zhiwei YANG,Yanni HE,Chao YANG. Effect of bone marrow-derived mesenchymal stem cell transplantation on mitochondrial autophagy in rats with vascular dementia through ROS/Nrf2 signaling and its mechanism [J]. Journal of Jilin University(Medicine Edition), 2025, 51(3): 610-620. |
| [2] | Jing DENG,Xuan WANG,Changyu SHI,Siqi YANG,Qinling ZOU,Ming JIN. Effect of securinine on proliferation and apoptosis of human colon cancer SW620 cells and its mechanism [J]. Journal of Jilin University(Medicine Edition), 2025, 51(2): 307-316. |
| [3] | Qiao WANG,Ziling ZENG,Xing WANG,Ning MA,Zhibin WANG,Guofeng XU,Xiefang YUAN,Xiaoyun WANG,Yuejiao LI,Hongmei TANG,Yun ZHANG. Effect of Aspergillus fumigatus on DNA damage and IL-33 expression in human bronchial epithelial cells and its mechanism [J]. Journal of Jilin University(Medicine Edition), 2024, 50(5): 1205-1216. |
| [4] | Hongmei TANG,Yuejiao LI,Xing WANG,Zhibin WANG,Xiefang YUAN,Xiaoyun WANG. Effect of Jiegeng Yuanshen Tang on airway inflammation and mucus secretion in allergic asthmatic mice and its mechanism [J]. Journal of Jilin University(Medicine Edition), 2024, 50(1): 10-17. |
| [5] | Naixu SHI,Miao HAO,Tianfu ZHANG,Kelin ZHAO,Ziyan HUANG,Chunyan LI,Xiaofeng WANG. Inhibitory effect of baicalein on proliferation of human tongue squamous cell carcinoma CAL27 cells and its mechanism [J]. Journal of Jilin University(Medicine Edition), 2023, 49(4): 985-993. |
| [6] | Bo HUANG,Jie DING,Hongrong GUO,Hongjuan WANG,Jianqun XU,Quan ZHENG. Effects of HIF-1α/ROS on apoptosis and invasion of lung cancer A549 cells under hypoxia and its mechanism [J]. Journal of Jilin University(Medicine Edition), 2023, 49(3): 682-690. |
| [7] | Yiling YANG,Meng XIAO,Hao WU,Biao LI,Changgui KOU. Investigation and analysis on psychological stress situation of nursing staffs in a Class-A Tertiary Hospital in Changchun City in Jilin Province [J]. Journal of Jilin University(Medicine Edition), 2023, 49(2): 514-519. |
| [8] | Dan WENG,Haixia DUAN. Risk of ectopic pregnancy in patients with IVF-ET predicted with nomogram model based on multiple influencing factors [J]. Journal of Jilin University(Medicine Edition), 2023, 49(1): 158-165. |
| [9] | Xuechun DU,Baosheng LI,Shuwei QIAO,Yanzhen OU,Zhen LI,Weiyan MENG. Effect of Porphyromonas gingivalis-LPS on expression levels of ferroptosis-related factors in macrophages [J]. Journal of Jilin University(Medicine Edition), 2022, 48(5): 1148-1155. |
| [10] | Haixin QU,Erwei YUAN,Weiping GUO,Yajing ZHANG,Wenxia MA,Dan WU. Improvement effect of luteolin on acute respiratory distress syndrome by inhibiting ROS/TXNIP/NLRP3 signaling pathway activation in mice [J]. Journal of Jilin University(Medicine Edition), 2022, 48(3): 676-683. |
| [11] | Cong FU,Yang YANG,Mingtu XU,Zeying QIN,Jingyang LI. Analysis on related influencing factors of life quality of inpatients with coronary heart disease [J]. Journal of Jilin University(Medicine Edition), 2022, 48(2): 478-486. |
| [12] | Yinong LIU,Qiang ZHANG,Li XU. Improvement effect of atorvastatin on vascular endothelial dysfunction induced by Ox-LDL/β2GPⅠ/anti-β2GPⅠ complex and its mechanism [J]. Journal of Jilin University(Medicine Edition), 2022, 48(2): 317-323. |
| [13] | Yang ZHOU,Xuguang MI,Wenxing PU,Wentao WANG,Meng JING,Fankai MENG. Ameliorative effect of melatonin on oxidative stress of human neuroblastoma SHSY5Y cells induced by hydrogen peroxide and its mechanism [J]. Journal of Jilin University(Medicine Edition), 2022, 48(2): 340-347. |
| [14] | Dan MAO,Zhishuang LI,Jiaxin CHENG,Ping HOU. Effect of Shenxianshengmai Oral Liquid on ROS expression in mice with sick sinus syndrome and its regulation on HCN4 ion channel [J]. Journal of Jilin University(Medicine Edition), 2021, 47(6): 1353-1361. |
| [15] | Dong CHEN,Na ZHOU,Xin ZHANG,Xiaoyu TAO,Wenyan TAN,Haicheng LIN,Shibin WANG,Saisai ZHAO,Wenhui GAO,Lina JIN,Yaqin YU. Epidemiological characteristics and influencing factors of risk behaviors of patients with bipolar disorder in Guangdong Province [J]. Journal of Jilin University(Medicine Edition), 2021, 47(6): 1562-1569. |
|
||