吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (2): 662-674.doi: 10.13278/j.cnki.jjuese.20190130

• 油气勘探开发 • 上一篇    

渝东南盆缘转换带五峰组—龙马溪组页岩压力体系与有机孔发育关系

高玉巧, 蔡潇, 何希鹏, 吴艳艳, 丁安徐, 高和群, 张培先   

  1. 中国石化华东油气分公司勘探开发研究院, 南京 210011
  • 收稿日期:2019-06-26 出版日期:2020-03-26 发布日期:2020-03-31
  • 作者简介:高玉巧(1978-),女,高级工程师,博士,主要从事页岩气勘探开发方面的研究,E-mail:gaoyq.hdsj@sinopec.com
  • 基金资助:
    国家科技重大专项(2016ZX05061);中石化科技部项目(P18057-2)

Relationship Between Shale Pressure System and Organic Pore Development of Wufeng-Longmaxi Formation in Marginnal Conversion Zone of Southeastern Chongqing Basin

Gao Yuqiao, Cai Xiao, He Xipeng, Wu Yanyan, Ding Anxu, Gao Hequn, Zhang Peixian   

  1. SINOPEC East China Oil and Gas Company Exploration and Development Research Institute, Nanjing 210011, China
  • Received:2019-06-26 Online:2020-03-26 Published:2020-03-31
  • Supported by:
    Supported by National Science and Technology Major Project (2016ZX05061) and Sinopec Ministry of Science and Technology Project (P18057-2)

摘要: 四川盆地东南部及其盆缘转换带(以下简称渝东南盆缘转换带)是中国常压页岩气勘探的热点地区。为了厘清渝东南地区页岩气富集规律、优选水平井穿层层段及指导多层系立体开发建设,本文基于扫描电镜的图像定量表征技术,结合三轴力学、液氮吸附等实验分析结果,研究了页岩压力体系与有机孔的发育关系。结果表明:渝东南盆缘转换带五峰组—龙马溪组页岩下部①—②小层有机孔孔径小(1~30 nm),孔隙发育的密集程度高(55.55~808.03个/μm2);其上部③—⑤小层有机孔孔径变大(30~50 nm),孔隙发育的密集程度低(47.31~466.42个/μm2);压力系数与有机孔圆度有明显的正相关性。基于液氮吸附实验的孔隙体积分形维数结果表明,研究区龙马溪组页岩孔隙内流体压力的增加,能够对孔隙进行更好的支撑作用,保证孔隙不会因为上覆地层压力而造成变形,使得孔隙能够得到更好的保存。因此,有机孔发育差异是上覆地层压力和孔隙内流体压力共同造成的结果。对于常压区,上覆地层的压力对孔隙发育有着更为重要的影响;对于超压区,孔隙内流体压力的增加会减缓孔隙的变形和消失。三轴力学实验表明,①小层上部观音桥段的存在使得岩石的抗压强度变大,由此在纵向上形成一种压力隔断,引起了上下压力系数的差异,形成了不同的亚压力体系,从而导致了孔隙发育特征的差异。

关键词: 页岩, 五峰组—龙马溪组, 压力体系, 有机孔, 渝东南盆缘转化带

Abstract: Southeastern Sichuan basin and its marginal transition zone (hereinafter referred to as the basin-margin transition zone of SE Chongqing) is the focus of normal-pressure shale gas exploration in China. In order to understand the law of the shale gas enrichment in the southeastern Chongqing, to optimize the rough layers of horizontal well, and further guide the three-dimensional development and construction of the multi-layer system, the relationship between shale pressure system and the development of organic pores was studied by using the image quantitative characterization technology based on scanning electron microscope and the experimental analysis results of triaxial mechanics and liquid nitrogen adsorption. The results show that the organic pore size is small(1-30 nm) in the lower part of Wufeng-Longmaxi Formation shale,but the density of pore development is high(55.55-808.03 count/μm2). The organic pore size is high(30-50 nm) in the upper part,but the density of pore development is small(47.31-466.42 count/μm2). There is a significant positive correlation between pressure coefficient and roundness of organic holes. With the increase of fluid pressure in the pore, the pore will not be deformed by the overburden formation pressure, so that the pore can be better preserved. volume fractal dimension based on liquid nitrogen adsorption experiment show that the increase of fluid pressure in the pore can support the pore better, and ensure the difference of organic pore development is the common result of overburden formation pressure and pore fluid pressure. For the atmospheric pressure area, the pressure of overlying strata has important influence on pore development. For the overpressure zone, the increase of fluid pressure in the pore will slow down the deformation and disappearance of the pore. The realization of triaxial mechanics shows that the existence of Guanyinqiao Formation will increase the compressive strength of rock, thus forming a pressure partition in the vertical direction, resulting in the difference of pressure coefficient between the upper and lower layers, forming different subpressure systems, resulting in the difference of pore development characteristics.

Key words: shale, Wufeng-Longmaxi Formation, pressure system, organic pore, transition zone of basin margin in southeast Chongqing

中图分类号: 

  • P59
[1] 刘忠宝,高波,张钰莹,等.上扬子地区下寒武统页岩沉积相类型及分布特征[J]. 石油勘探与开发, 2017, 44(1):21-31. Liu Zhongbao, Gao Bo, Zhang Yuying, et al. Types and Distribution of the Shale Sedimentary Facies of the Lower Cambrian in Upper Yangtze Area, South China[J]. Petroleum Exploration and Development, 2017, 44(1):21-31.
[2] 谭聪,于炳松,阮壮,等.鄂尔多斯盆地西南部延长组高分辨率层序地层划分[J]. 吉林大学学报(地球科学版),2016,46(2):336-347. Tan Cong,Yu Bingsong, Ruan Zhuang, et al. High-Resolution Sequence Stratigraphy Division of Yanchang Formation in Southwestern Ordos Basin[J]. Journal of Jilin University(Earth Science Edition),2016,46(2):336-347.
[3] 刘忠宝,高波,冯动军,等.上扬子地区下寒武统黑色页岩矿物组成特征及其油气勘探意义[J]. 天然气工业,2017,37(4):21-26. Liu Zhongbao, Gao Bo, Feng Dongjun, et al. Mineral Composition of the Lower Cambrian Black Shale in the Upper Yangtze Region and Its Significance in Oil and Gas Exploration[J]. Natural Gas Industry, 2017, 37(4):21-26.
[4] 李志明,芮晓庆,黎茂稳,等.北美典型混合页岩油气系统特征和启示[J]. 吉林大学学报(地球科学版),2015,45(4):1060-1072. Li Zhiming, Rui Xiaoqing, Li Maowen, et al. Characteristics of Typical Hybrid Shale-Oil System in North American and Its Implications[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(4):1060-1072.
[5] 单祥,郭华军,郭旭光,等.低渗透储层孔隙结构影响因素及其定量评价:以准噶尔盆地金龙2地区二叠系上乌尔禾组二段为例[J]. 吉林大学学报(地球科学版),2019,49(3):637-649. Shan Xiang, Guo Huajun, Guo Xuguang,et al. Influencing Factors and Quantitative Assessment of Pore Structure in Low Permeability Reservoir:A Case Study of 2nd Member of Permian Upper Urho Formation in Jinlong 2 Area,Junggar Basin[J]. Journal of Jilin University(Earth Science Edition), 2019,49(3):637-649.
[6] 冯小龙,敖卫华,唐玄.陆相页岩气储层孔隙发育特征及其主控因素分析:以鄂尔多斯盆地长7段为例[J]. 吉林大学学报(地球科学版),2018,48(3):693-704. Feng Xiaolong, Ao Weihua, Tang Xuan. Characteristics of Pore Development and Its Main Cont-rolling Factors of Continental Shale Gas Reservoirs:A Case Study of Chang 7 Member in Ordos Basin[J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3):693-704.
[7] 徐宏杰,胡宝林,郑建斌,等.淮南煤田煤系页岩气储集空间特征及其岩相控制作用[J]. 吉林大学学报(地球科学版), 2017, 47(2):418-430. Xu Hongjie, Hu Baolin, Zheng Jianbin, et al. Reservoir Characteristics and Their Lithofacies Controlling Effect of Coal-Bearing Mudstone in Huainan Coal Field[J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2):418-430.
[8] 聂海宽,唐玄,边瑞康.页岩气成藏控制因素及我国南方页岩气发育有利区预测[J]. 石油学报, 2009, 30(4):484-491. Nie Haikuan, Tang Xuan, Bian Ruikang. Controlling Factors for Shale Gas Accumulation and Prediction of Potential Development Area in Shale Gas Reservoir of South China[J]. Acta Petrolei Sinica, 2009, 30(4):484-491.
[9] 郭旭升,胡东风,李宇平,等.涪陵页岩气田富集高产主控地质因素[J].石油勘探与开发,2017,44(4):481-491. Guo Xusheng,Hu Dongfeng,Li Yuping, et al. Geological Factors Controlling Shale Gas Enrichment and High Production in Fuling Shale Gas Field[J]. Petroleum Exploration and Development, 2017, 44(4):481-491.
[10] 赵谦平,张丽霞,尹锦涛,等.含粉砂质层页岩储层孔隙结构和物性特征:以张家滩陆相页岩为例[J]. 吉林大学学报(地球科学版), 2018, 48(4):1018-1029. Zhao Qianping, Zhang Lixia, Yin Jintao, et al. Pore Structure and Physical Characteristics of Shale Reservoir Interbedded with Silty Layers:An Example from Zhangjiatan Lacustrine Shale[J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4):1018-1029.
[11] 李志明,张隽,鲍云杰,等.沾化凹陷渤南洼陷沙一段湖相富有机质烃源岩岩石学与孔隙结构特征:以罗63井和义21井取心段为例[J]. 吉林大学学报(地球科学版), 2018, 48(1):39-52. Li Zhiming, Zhang Jun, Bao Yunjie, et al. Characteristics of Petrology and Pore Configuration of Lacustrine Source Rock Rich in Organic Matter from the First Member of Shahejie Formation in Bonan Sag, Zhanhua Depression:A Case Study on Well Luo 63 and Yi 21 Cored Interval[J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1):39-52.
[12] 聂海宽,汪虎,何治亮,等.常压页岩气形成机制、分布规律及勘探前景:以四川盆地及其周缘五峰组-龙马溪组为例[J]. 石油学报, 2019, 40(2):131-143,164. Nie Haikuan, Wang Hu, He Zhiliang, et al. Formation Mechanism,Distribution and Exploration Prospect of Normal Pressure Shale Gas Reservoir:A Case Study of Wufeng Formation-Longmaxi Formation in Sichuan Basin and Its Periphery[J]. Acta Petrolei Sinica, 2019, 40(2):131-143,164.
[13] 金之钧,胡宗全,高波,等.川东南地区五峰组-龙马溪组页岩气富集与高产控制因素[J].地学前缘,2016,23(1):1-10. Jin Zhijun, Hu Zongquan, Gao Bo, et al. Controlling Factors on the Enrichment and High Productivity of Shale Gas in the Wufeng-Longmaxi Formations,Southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1):1-10.
[14] 何希鹏,何贵松,高玉巧,等.渝东南盆缘转换带常压页岩气地质特征及富集高产规律[J]. 天然气工业, 2018, 38(12):1-14. He Xipeng, He Guisong, Gao Yuqiao, et al. Geological Characteristics and Enrichment Laws of Normal-Pressure Shale Gas in the Basin-Margin Transition Zone of SE Chongqing[J]. Natural Gas Industry, 2018, 38(12):1-14.
[15] 马新华,谢军.川南地区页岩气勘探开发进展及发展前景[J].石油勘探与开发,2018,45(1):161-169. Ma Xinhua, Xie Jun. The Progress and Prospects of Shale Gas Exploration and Exploitation in Southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(1):161-169.
[16] 方志雄,何希鹏.渝东南武隆向斜常压页岩气形成与演化[J].石油与天然气地质,2016,37(6):819-827. Fang Zhixiong, He Xipeng. Formation and Evolution of Normal Pressure Shale Gas Reservoir in Wulong Syncline, Southeast Chongqing, China[J]. Oil & Gas Geology, 2016, 37(6):819-827.
[17] 何希鹏,高玉巧,唐显春,等.渝东南地区常压页岩气富集主控因素分析[J].天然气地球科学,2017,28(4):654-664. He Xipeng, Gao Yuqiao, Tang Xianchun, et al.Analysis of Major Factors Controlling the Accumulation in Normal Pressure Shale Gas in the Southeast of Chongqing[J]. Natural Gas Geoscience, 2017, 28(4):654-664.
[18] 魏志红.四川盆地及其周缘五峰组-龙马溪组页岩气的晚期逸散[J].石油与天然气地质,2015,36(4):659-665. Wei Zhihong. Late Fugitive Emission of Shale Gas from Wufeng-Longmaxi Formation in Sichuan Basin and Its Periphery[J]. Oil & Gas Geology,2015,36(4):659-665.
[19] 李皎,何登发,梅庆华.四川盆地及邻区奥陶纪构造-沉积环境与原型盆地演化[J].石油学报,2015,36(4):427-445. Li Jiao, He Dengfa, Mei Qinghua. Tectonic-Depositional Environment and Proto-Type Basins Evolution of the Ordovician in Sichuan Basin and Adjacent Areas[J]. Acta Petrolei Sinica, 2015,36(4):427-445.
[20] Houben M E, Desbois G, Urai J L, et al. A Comparative Study of Representative 2D Microstructures in Shaly and Sandy Facies of Opalinus Clay(Mont Terri,Switzerland) Inferred form BIB-SEM and MIP Methods[J]. Marine and Petroleum Geology,2014,49:143-161.
[21] Nie Haikuan, Jin Zhijun. Source Rock and Cap Rock Controls on the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation Shale Gas Accumulation in the Sichuan Basin and Its Peripheral Areas[J]. Acta Geologica Sinica:English Edition,2016,90(3):1059-1060.
[22] 吴松涛,朱如凯,崔京钢,等.鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J]. 石油勘探与开发, 2015, 42(2):167-176. Wu Songtao, Zhu Rukai,Cui Jinggang,et al. Characteristics of Lacustrine Shale Porosity Evolution, Triassic Chang 7 Member, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(2):167-176.
[23] Nie Haikuan, Jin Zhijun, Zhang Jinchuan. Characteristics of Three Organic Matter Pore Types in the Wufeng-Longmaxi Shale of the Sichuan Basin,Southwest China[J]. Scientific Reports, 2018, 8:7014.
[24] 廖东良,路保平,陈延军.页岩气地质甜点评价方法:以四川盆地焦石坝页岩气田为例[J].石油学报, 2019, 40(2):144-151. Liao Dongliang, Lu Baoping, Chen Yanjun. An Evaluation Method of Geological Sweet Spots of Shale Gas Reservoir:A Case Study of the Jiaoshiba Gas Field, Sichuan Basin[J]. Acta Petrolei Sinica, 2019, 40(2):144-151.
[25] 陈桂华,白玉湖,陈晓智,等.页岩油气纵向综合甜点识别新方法及定量化评价[J].石油学报,2016,37(11):1337-1342. Chen Guihua, Bai Yuhu, Chen Xiaozhi, et al. A New Identification Method for the Longitudinal Integrated Shale Oil/Gas Sweet Spot and Its Quantitative Evaluation[J]. Acta Petrolei Sinica, 2016, 37(11):1337-1342.
[26] 陈曼霏,何生,易积正,等.涪陵页岩气田平桥区块页岩气储层有机质孔发育特征[J].石油学报, 2019, 40(4):423-433. Chen Manfei, He Sheng, Yi Jizheng, et al. Development Characteristics of Organic Pore in Shale Gas Reservoir of Wufeng Formation-Member 1 of Longmaxi Formation in Pingqiao Block, Fuling Shale Gas Field[J]. Acta Petrolei Sinica, 2019, 40(4):423-433.
[27] 武瑾,梁峰,吝文,等.渝东北地区巫溪2井五峰组-龙马溪组页岩气储层及含气性特征[J].石油学报, 2017, 38(5):512-524. Wu Jin, Liang Feng, Lin Wen, et al. Reservoirs Characteristics and Gas-Bearing Capacity of Wufeng-Longmaxi Formation Shale in Well WX-2,Northeast Chongqing Area[J]. Acta Petrolei Sinica, 2017, 38(5):512-524.
[28] 彭女佳,何生,郝芳,等.川东南彭水地区五峰组-龙马溪组页岩孔隙结构及差异性[J].地球科学,2017,42(7):1134-1146. Peng Nüjia, He Sheng, Hao Fang, et al.The Pore Structure and Difference Between Wufeng and Longmaxi Shales in Pengshui Area, Southeastern Sichuan[J].Earth Science, 2017, 42(7):1134-1146.
[29] 纪文明,宋岩,姜振学,等.四川盆地东南部龙马溪组页岩微-纳米孔隙结构特征及控制因素[J].石油学报,2016,37(2):182-195. Ji Wenming, Song Yan, Jiang Zhenxue, et al. Micro-Nano Pore Structure Characteristics and Its Control Factors of Shale in Longmaxi Formation, Southeastern Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(2):182-195.
[30] Zhao Mingsheng, Tian Jingchun, Wang Yue. The Forming Mechanism About Contemporaneous Deformed Structures in Upper Ordovician Wufeng Formation from the Southern Edge of Upper Yangtz Sea[J]. Geological Review, 2014,60(2):299-309.
[1] 刘招君, 柳蓉, 孙平昌, 孟庆涛, 胡菲. 中国典型盆地油页岩特征及赋存规律[J]. 吉林大学学报(地球科学版), 2020, 50(2): 313-325.
[2] 王嗣敏, 臧东升, 王熙琼, 李杰, 韩嵩, 李建中. 辽西建昌盆地油页岩发育特征及沉积环境[J]. 吉林大学学报(地球科学版), 2020, 50(2): 326-340.
[3] 孟庆涛, 李金国, 刘招君, 胡菲, 徐川. 茂名盆地羊角含矿区始新统油柑窝组油页岩有机地球化学特征及沉积环境[J]. 吉林大学学报(地球科学版), 2020, 50(2): 356-367.
[4] 贾建亮, 刘招君, 孟庆涛, 孙平昌, 徐进军, 柳蓉, 白悦悦. 中国陆相油页岩含油率与总有机碳的响应机理[J]. 吉林大学学报(地球科学版), 2020, 50(2): 368-377.
[5] 宋宇, 刘招君, Achim Bechtel, 徐银波, 孟庆涛, 孙平昌, 朱凯. 老黑山盆地下白垩统穆棱组油页岩与煤含油率控制因素[J]. 吉林大学学报(地球科学版), 2020, 50(2): 378-391.
[6] 郑国栋, 孟庆涛, 刘招君. 松辽盆地北部青一段油页岩地球化学特征及其记录的古湖泊学信息[J]. 吉林大学学报(地球科学版), 2020, 50(2): 392-404.
[7] 曾文人, 孟庆涛, 刘招君, 徐银波, 孙平昌, 王克兵. 柴北缘团鱼山地区中侏罗统石门沟组油页岩有机地球化学特征及古湖泊条件[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1270-1284.
[8] 罗腾, 冯晅, 郭智奇, 刘财, 刘喜武. 基于模拟退火粒子群优化算法的裂缝型储层各向异性参数地震反演[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1466-1476.
[9] 马中良, 王强, 郑伦举, 张彩明. 油页岩原位开采温度-时间-转化率判识方法及应用[J]. 吉林大学学报(地球科学版), 2019, 49(2): 394-399.
[10] 王修齐, 滕龙, 郑红军, 方朝刚, 张训华. 下扬子丰城-乐平地区二叠系乐平组页岩气潜力综合评价[J]. 吉林大学学报(地球科学版), 2019, 49(1): 248-260.
[11] 王涛利, 王庆涛, 刘文平, 卢鸿, 刘大永. 页岩残留气定量方法及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1645-1653.
[12] 赵谦平, 张丽霞, 尹锦涛, 俞雨溪, 姜呈馥, 王晖, 高潮. 含粉砂质层页岩储层孔隙结构和物性特征:以张家滩陆相页岩为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1018-1029.
[13] 日比娅, 孙友宏, 韩婧, 郭明义. 3种无机盐催化热解油页岩[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1043-1049.
[14] 邓馨卉, 刘财, 郭智奇, 刘喜武, 刘宇巍. 济阳坳陷罗家地区各向异性页岩储层全波场地震响应模拟及分析[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1231-1243.
[15] 张冰, 郭智奇, 徐聪, 刘财, 刘喜武, 刘宇巍. 基于岩石物理模型的页岩储层裂缝属性及各向异性参数反演[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1244-1252.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!