吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (2): 495-504.doi: 10.13278/j.cnki.jjuese.20190197
• 地质工程与环境工程 • 上一篇
危润初1,2,3, 姜颖迪1, 李铭远4, 杜成额4, 乔小坡1
Wei Runchu1,2,3, Jiang Yingdi1, Li Mingyuan4, Du Cheng'e4, Qiao Xiaopo1
摘要: 针对尼日利亚北部乍得湖盆地降雨入渗补给地下水的问题,选择典型区域开展土壤剖面取样工作,采用氯离子平衡法计算各剖面降雨入渗补给量,并结合野外调查、钻探等工作研究影响降雨入渗补给的主要因素。结果表明:4个取样点(Y1、Y2、Y3、Y4)土壤剖面年平均降雨入渗补给量分别为4.9、1.5、7.9、26.2 mm/a,平均值为10.1 mm/a,年平均降雨入渗补给率仅为0.72%、0.22%、1.17%、3.87%,平均值为1.49%;研究区降雨入渗补给量很少,降雨对地下水资源的补给有限,地下水的主要补给来源为Hadejia河;研究区蒸散发量大,植物根系发达、吸水能力强,地表入渗水分多在表层土壤中或泥质层与风积砂层交界面上消耗于蒸发蒸腾,最终散失到大气中。在人类活动严重改变Hadejia河水文情势的背景下,研究区这种独特的地下水补给特征导致地下水位快速下降,使得区内正面临较严重的地下水资源枯竭问题。
中图分类号:
[1] Scanlon B R, Keese K E, Flint A L, et al. Global Synthesis of Groundwater Recharge in Semiarid and Arid Regions[J]. Hydrological Processes, 2006, 20(15):3335-3370. [2] Lerner D N, Issar A S, Simmers I. Groundwater Recharge:A Guide to Understanding and Estimating Natural Recharge[M]. Hannover:Heise, 1990. [3] Gaye C B, Edmunds W M. Groundwater Recharge Estimation Using Chloride, Stable Isotopes and Tritium Profiles in the Sands of Northwestern Senegal[J]. Environmental Geology, 1996, 27(3):246-251. [4] 尹立河, 王晓勇, 黄金廷, 等. 干旱区植被盖度增加对降水入渗补给地下水的影响:试验研究与数值模拟[J]. 地质通报, 2015, 34(11):2066-2073. Yin Lihe, Wang Xiaoyong, Huang Jinting, et al. The Impact of Vegetation Coverage Increase on Groundwater Recharge in the Arid Regions of Northwest China:Experimental and Numerical Study[J]. Geological Bulletin of China, 2015, 34(11):2066-2073. [5] Ngatcha B N, Mudry J, Leduc C. Water Resources Management in the Lake Chad Basin:Diagnosis and Action Plan[J]. Applied Groundwater Studies in Africa, 2008, 13:65-84. [6] Goes B J M. Estimate of Shallow Groundwater Recharge in the Hadejia-Nguru Wetlands, Semi-Arid Northeastern Nigeria[J]. Hydrogeology Journal, 1999, 7(3):294-304. [7] Barbier E B. Upstream Dams and Downstream Water Allocation:The Case of the Hadejia-Jama'Are Floodplain, Northern Nigeria[J]. Water Resources Research, 2003, 39(11):1-9. [8] Adelana S M A, Olasehinde P I, Bale R B, et al. An Overview of the Geology and Hydrogeology of Nigeria[J]. Applied Groundwater Studies in Africa, 2008, 13:171-197. [9] Genik G J. Petroleum Geology of Cretaceous-Tertiary Rift Basins in Niger, Chad, and Central African Republic[J]. AAPG Bulletin, 1993, 77(8):1405-1434. [10] 刘晓艳,陈建生,孙晓旭.采用氯离子示踪法计算沙漠降雨入渗量[J].农业工程学报,2010,26(增刊1):146-149. Liu Xiaoyan, Chen Jiansheng, Sun Xiaoxu. Application of Chloride Tracer Method to Study Replenishment Ratio of Precipitation in Desert[J]. Chinese Society of Agricultural Engineering, 2010,26(Sup.1):146-149. [11] Newman B D, Campbell A R, Wilcox B P. Tracer-Based Studies of Soil Water Movement in Semi-Arid Forests of New Mexico[J]. Journal of Hydrology, 1997, 196(1/2/3/4):251-270. [12] Phillips F M. Environmental Tracers for Water Movement in Desert Soils of the American Southwest[J]. Soil Science Society of America Journal, 1994, 58(1):15-24. [13] Scanlon B R. Evaluation of Moisture Flux from Chloride Data in Desert Soils[J]. Journal of Hydrology, 1991, 128(1/2/3/4):137-156. [14] 陈宗宇, 毕二平, 聂振龙, 等. 包气带剖面中古水文-气候信息的初步研究[J]. 地球学报, 2001, 22(4):335-339. Chen Zongyu, Bi Erping, Nie Zhenlong, et al. A Tentative Discussion on Paleohydrological and Paleoclimatical Information from Unsaturated Zone Profile[J]. Acta Geoscientica Sinica, 2001, 22(4):335-339. [15] Goni I B, Fellman E, Edmunds W M. Rainfall Geochemistry in the Sahel Region of Northern Nigeria[J]. Atmospheric Environment, 2001, 35(25):4331-4339. [16] Li C, Kang S, Zhang Q, et al. Major Ionic Composition of Precipitation in the Nam Co Region, Central Tibetan Plateau[J]. Atmospheric Research, 2007, 85(3/4):351-360. [17] Safai P D, Rao P S P, Momin G A, et al. Chemical Composition of Precipitation During 1984-2002 at Pune, India[J]. Atmospheric Environment, 2004, 38(12):1705-1714. [18] Vignaud P, Duringer P, Mackaye H T, et al. Geology and Palaeontology of the Upper Miocene Toros-Menalla Hominid Locality, Chad[J]. Nature, 2002, 418:152. [19] Iwaco B V. Study of the Water Resources in the Komadougou-Yobe Basin[R]. Niamy:Nigeria-Niger Joint Commission for Cooperation, 1985. [20] Carter R C, Alkali A G. Shallow Groundwater in the Northeast Arid Zone of Nigeria[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 1996, 29(4):341-355. [21] 霍思远, 靳孟贵, 梁杏. 包气带弱渗透性黏土透镜体对降雨入渗补给影响的数值模拟[J]. 吉林大学学报(地球科学版), 2013, 43(5):1579-1587. Huo Siyuan, Jin Menggui, Liang Xing. Impacts of Low-Permeability Clay Lens in Vadose Zone onto Rainfall Infiltration and Groundwater Recharge Using Numerical Simulation of Variably Saturated Flow[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(5):1579-1587. |
[1] | 束龙仓, 王小博, 李虎, 倪寒茜, 李罡, 余亚飞, 王鑫, 张曼琦. 地铁施工对济南白泉泉群流量的影响[J]. 吉林大学学报(地球科学版), 2021, 51(1): 192-200. |
[2] | 邱淑伟, 吴亚敏, 柯昱琪, 闫佰忠. 基于遍历搜索算法的水文地质参数优化求解[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1854-1861. |
[3] | 朴云仙, 胡慧, 姚兰, 张彧, 梁丽娜, 刘再冉. 利用核酸适配体修饰氧化石墨烯复合物的17β-雌二醇检测机理[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1189-1196. |
[4] | 盛冲, 许鹤华, 张云帆, 张文涛, 任自强. 钙质砂水理性质及对岛礁淡水透镜体形成的影响[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1127-1138. |
[5] | 申豪勇, 梁永平, 赵春红, 唐春雷, 王志恒. 古堆泉岩溶地下水系统特征及系统圈划[J]. 吉林大学学报(地球科学版), 2020, 50(1): 217-225. |
[6] | 闫佰忠, 孙剑, 王昕洲, 韩娜, 刘博. 基于多变量LSTM神经网络的地下水水位预测[J]. 吉林大学学报(地球科学版), 2020, 50(1): 208-216. |
[7] | 曹阳, 申月芳, 焦志亮, 翟远征, 杨耀栋. 中新天津生态城孔隙水化学垂向分布及其成因[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1109-1120. |
[8] | 董林垚, 任洪玉, 雷俊山, 刘纪根. 地表暖化影响下温度示踪地下水流速方法[J]. 吉林大学学报(地球科学版), 2019, 49(3): 773-783. |
[9] | 付晓刚, 唐仲华, 刘彬涛, 蔺林林, 卜华, 闫佰忠. 基于模拟-优化模型的山东羊庄盆地地下水可开采量研究[J]. 吉林大学学报(地球科学版), 2019, 49(3): 784-796. |
[10] | 周海玲, 苏春利, 李俊霞. 地表灌溉对沉积含水层中碘迁移释放过程的影响[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1810-1820. |
[11] | 陈雄, 张岩, 王艺伟, 叶淑君, 吴吉春, 于军, 龚绪龙. 苏北沿海三市三维地下水流数值模拟[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1434-1450. |
[12] | 丁一凡, 郝光, 刘本华, 张子明, 杨鑫鑫, 刘明柱. 某四氯化碳污染场地自然恢复的地球化学特征[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1465-1472. |
[13] | 束龙仓, 李姝蕾, 王松, 克热木·阿布都米吉提, 鲁程鹏, 李砚阁, 李伟. 岩溶水源地安全供水的风险评价指标筛选——以娘子关泉水源地为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 805-814. |
[14] | 张海燕, 彭彤彤, 温玉娟, 高思萌, 杨悦锁. 五大连池药泉山矿泉微生物多样性及其地质和环境控制特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 815-826. |
[15] | 冶雪艳, 李明杰, 杜新强, 方敏, 贾思达. 基于地质条件的海绵城市适宜设施类型选择[J]. 吉林大学学报(地球科学版), 2018, 48(3): 827-835. |
|