吉林大学学报(地球科学版) ›› 2025, Vol. 55 ›› Issue (1): 31-45.doi: 10.13278/j.cnki.jjuese.20230115

• 地质与资源 • 上一篇    下一篇

松辽盆地徐家围子断陷沙河子组砂砾岩储层有效性综合评价

高波1,2, 潘哲君1, 刘连杰2, 李玲玲2, 洪淑新2, 潘会芳2, 张波2   

  1. 1.东北石油大学地球科学学院,黑龙江 大庆 163318
    2.大庆油田有限责任公司勘探开发研究院,黑龙江 大庆 163712
  • 收稿日期:2023-05-06 出版日期:2025-01-26 发布日期:2025-02-07
  • 通讯作者: 潘哲君(1974—),男,教授,博士,主要从事非常规油气工程与地质一体化方面的研究,E-mail:zhejun.pan@nepu.edu.cn
  • 作者简介:高波(1984—),女,高级工程师,主要从事非常规储层评价方面的研究,E-mail:gb915@petrochina.com.cn
  • 基金资助:
    国家自然科学基金项目(U23A20596);黑龙江省“揭榜挂帅”科技攻关项目(DQYT 2022-JS-758)

Comprehensive Evaluation on the Effectiveness of Conglomerate Reservoir in Shahezi Formation of Xujiaweizi Fault Depression, Songliao Basin

Gao Bo1, 2, Pan Zhejun1, Liu Lianjie2, Li Lingling2, Hong Shuxin2, Pan Huifang2, Zhang Bo2   

  1. 1. School of Earth Sciences, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
    2. Exploration and Development Research Institute of Daqing Oilfield Co., Ltd., Daqing 163712, Heilongjiang, China
  • Received:2023-05-06 Online:2025-01-26 Published:2025-02-07
  • Supported by:
    the National Natural Science Foundation of China (U23A20596)  and Heilongjiang Province “Unveiling the List and Leading the Way” Science and Technology Research Project (DQYT 2022-JS-758)

摘要: 松辽盆地徐家围子断陷深层砂砾岩层系中天然气藏为典型的低孔、低渗非常规资源类型,局部发育高孔、高渗带,满足致密气成藏需求。为揭示砂砾岩储层结构及其对试气产能的影响,应用薄片鉴定、扫描电镜、压汞、二维核磁等技术方法,开展松辽盆地徐家围子断陷沙河子组砂砾岩储层的有效性剖析。研究结果表明:天然气储层岩性以砂岩、砾岩为主,成分成熟度及结构成熟度低,储集空间以次生溶蚀孔隙为主,局部发育沟通孔隙的微裂缝,提高了储层的渗透性;砂砾岩储层孔喉半径分布范围大(纳米级—微米级),属于微孔喉型储层,受岩石分选、黏土矿物及碳酸盐等胶结物发育程度的影响,砾岩孔喉连通性好于砂岩,粗砂岩好于细砂岩;在垂向上,层序四孔喉结构好于其他层序;储层孔隙度主要分布于0.3%~8.0%之间,渗透率多小于0.987 0×10-3 μm2,据物性与试气产能相结合的经验统计法,估算最小流动孔喉半径进而确定致密砂岩孔隙度下限为3.0%,渗透率为0.019 7×10-3 μm2,致密砾岩孔隙度下限为2.8%,渗透率为0.019 7×10-3 μm2

关键词: 致密储层, 砂砾岩, 孔隙结构, 物性下限, 综合评价, 沙河子组, 徐家围子断陷, 松辽盆地

Abstract: The natural gas reservoir in the deep sand and gravel strata of the Xujiaweizi fault depression in the Songliao basin is a typical unconventional resource type of “low porosity and low permeability”, with locally developed high porosity and high permeability zones, meeting the requirements for tight gas reservoir formation. Using techniques such as thin section identification, scanning electron microscopy, mercury intrusion detection, and two-dimensional nuclear magnetic resonance, an effective analysis of the sand and gravel reservoirs in the Shahezi Formation of the Xujiaweizi fault in the Songliao basin was conducted to reveal the structure of the sand and gravel reservoirs and their impact on productivity. The research results indicate that the lithology of natural gas reservoirs is mainly composed of sandstone and conglomerate, with low compositional and structural maturity. The reservoir space is mainly composed of secondary dissolution pores, and locally developed microcracks connecting pores, which improve the permeability of the reservoir; The distribution range of pore throat radius in gravel reservoirs is large (nanoscale to micrometer scale), belonging to the micropore throat type reservoir. Influenced by rock sorting, clay minerals, and the development degree of carbonates and other cementitious substances, the connectivity of pore throats in gravel reservoirs is better than that in sandstone, and that in coarse sandstone is better than that in fine sandstone. In the vertical direction, the pore throat structure of the fourth sequence is better than other sequences; The porosity of the reservoir is mainly distributed between 0.3% and 8.0%, and the permeability is mostly less than 0.987 0×10-3 μm2. Based on the empirical statistical method combining physical properties and gas production capacity, the minimum flow pore throat radius is estimated to determine the lower limit of porosity for tight sandstone as 3.0%, with a permeability of 0.019 7×10-3 μm2. The lower limit of porosity for tight conglomerate is 2.8%, and the permeability is 0.019 7×10-3 μm2.

Key words: tight reservoir, sandy conglomerate, pore structure, physical property lower limit, comprehensive evaluation; Shahezi Formation, Xujiaweizi fault depression, Songliao basin

中图分类号: 

  • P618.13
[1] 张熠, 刘萍, 周翔. 松辽盆地王府地区泉四段常规、非常规油气有序分布及成藏主控因素[J]. 吉林大学学报(地球科学版), 2025, 55(1): 46-56.
[2] 王亚, 刘宗宾, 马奎前, 路研, 刘超. 基于LDA协同SSOM算法的低渗透砂岩孔隙结构评价[J]. 吉林大学学报(地球科学版), 2025, 55(1): 298-311.
[3] 李永刚.  长岭断陷查干花次凹火石岭组水下喷发火山岩相测井响应特征[J]. 吉林大学学报(地球科学版), 2024, 54(6): 2061-2074.
[4] 王安, 胡明毅, 高家俊, 杨亮, 邢济麟. 松南长岭凹陷青山口组一段泥页岩元素地球化学特征及古环境意义[J]. 吉林大学学报(地球科学版), 2024, 54(6): 2075-2088.
[5] 吴远坤, 刘成林, 于春勇. 松辽盆地双城断陷深层原油成藏模式[J]. 吉林大学学报(地球科学版), 2024, 54(5): 1443-1456.
[6] 于正军, 张军华, 周昊, 任瑞军, 陈永芮, 杨玉龙. 准噶尔盆地东南缘页岩油储层脆性预测与评价[J]. 吉林大学学报(地球科学版), 2024, 54(5): 1711-1723.
[7] 谢通, 陈威, 潘诗洋, 石万忠, 王亿, 张焱林, 段轲, 任志军. 鄂西地区二叠系大隆组含气页岩岩相类型及储层特征[J]. 吉林大学学报(地球科学版), 2024, 54(4): 1154-1176.
[8] 刘宗宾, 李超, 路研, 王亚, 黄建廷. 基于孔隙结构表征的低渗透砂岩流体赋存特征及渗透率评价[J]. 吉林大学学报(地球科学版), 2024, 54(4): 1124-1136.
[9] 丁恺, 赵福海, 高莲凤, 李丙喜, 付文钊, 高晨阳, 靳雪彬. 基于变分模态分解的营四段厚层砂砾岩地层细分层序[J]. 吉林大学学报(地球科学版), 2024, 54(4): 1406-1418.
[10] 胡佳, 王丽丽, 王立贤, 韩昊天, 陶鹏, 唐华风.

基于岩浆汇聚区和上升通道特征的火山岩分布规律——以松辽盆地长岭断陷下白垩统营城组为例 [J]. 吉林大学学报(地球科学版), 2024, 54(2): 429-446.

[11] 孟庆涛, 胡菲, 刘招君, 孙平昌, 柳蓉. 陆相坳陷湖盆细粒沉积岩岩相类型及成因:以松辽盆地晚白垩世青山口组为例[J]. 吉林大学学报(地球科学版), 2024, 54(1): 20-37.
[12] 张文, 蓝升, 马文良, 王佳. 新疆油页岩升温过程中孔隙结构演化特征[J]. 吉林大学学报(地球科学版), 2023, 53(6): 1689-1705.
[13] 张增宝. 准噶尔盆地阜康凹陷深层侏罗系砂岩储层差异性成岩演化与烃类充注[J]. 吉林大学学报(地球科学版), 2023, 53(6): 1672-1688.
[14] 熊安亮, 程国峰, 李东涛, 丁维盼, 刘宇羲, 陈刚, 杨磊, 袁耀利, 朱玉双, 刘林玉. 超低渗储层微观孔隙结构及剩余油分布特征——以吴起油田白豹地区长4+5为例[J]. 吉林大学学报(地球科学版), 2023, 53(5): 1338-1351.
[15] 李研, 聂逢君, 王东旭, 贾立城, 卢胜军, 严兆彬, 罗敏, 刘晓辉. 松辽盆地北部砂岩型铀矿成矿潜力分析[J]. 吉林大学学报(地球科学版), 2023, 53(4): 1075-1089.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[4] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[8] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[9] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[10] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .