吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (4): 1026-1041.doi: 10.13278/j.cnki.jjuese.201604104

• 地质与资源 • 上一篇    下一篇

全球早古生代造山带(Ⅳ): 板块重建与Carolina超大陆

李三忠1,2,3, 杨朝1,2, 赵淑娟1,2, 刘鑫1,2, 余珊1,2, 李玺瑶1,2, 郭玲莉1,2, 索艳慧1,2, 戴黎明1,2, 郭润华1,2, 张国伟1,2   

  1. 1. 中国海洋大学海洋地球科学学院, 山东 青岛 266100;
    2. 海底科学与探测技术教育部重点实验室, 山东 青岛 266100;
    3. 青岛海洋科学与技术国家实验室海洋地质功能实验室, 山东 青岛 266061
  • 收稿日期:2016-03-16 出版日期:2016-07-26 发布日期:2016-07-26
  • 作者简介:李三忠(1968),男,教授,博士,博士生导师,杰青,主要从事构造地质学及海洋地质学的教学和研究工作,E-mail:sanzhong@ouc.edu.cn
  • 基金资助:

    国家自然科学基金重大项目(41190072,41190070,U1606401);国家杰出青年基金项目(41325009);泰山学者特聘教授项目;鳌山卓越科学家计划项目

Global Early Paleozoic Orogens (Ⅳ): Plate Reconstruction and Supercontinent Carolina

Li Sanzhong1,2,3, Yang Zhao1,2, Zhao Shujuan1,2, Liu Xin1,2, Yu Shan1,2, Li Xiyao1,2, Guo Lingli1,2, Suo Yanhui1,2, Dai Liming1,2, Guo Runhua1,2, Zhang Guowei1,2   

  1. 1. College of Marine Geosciences, Ocean University of China, Qingdao 266100, Shandong, China;
    2. Key Lab of Submarine Geosciences and Prospecting Technique, Ministry of Education, Qindao 266100, Shandong, China;
    3. Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, Shandong, China
  • Received:2016-03-16 Online:2016-07-26 Published:2016-07-26
  • Supported by:

    Supported by Key Project of NSFC (Grants 41190072, 41190070, U1606401); NSFC for Distinguished Young Scientists (41325009); Taishan Scholor Program and Aoshan Elite Scientist Plan to Prof. Sanzhong Li

摘要:

古元古代与显生宙的板块构造特征和旋回演化过程具有明显区别,反映出地质记录为两种不同的板块构造体制。早古生代为这两个时期的过渡阶段,其构造过程研究与板块重建是地球板块构造旋回机制和周期分析的关键。本文采用综合集成的方法,在总结对比罗迪尼亚超大陆裂解以来全球早古生代主要碰撞造山带的地质事件基础上,分析早古生代碰撞造山带的演化特征,总结出与冈瓦纳大陆拼合、劳俄大陆拼合、古中华陆块群增生相关的7期碰撞-增生造山事件群:Brasiliano、东非、Kuunga、东亚与原特提斯洋和古亚洲洋演化相关的加里东期造山事件、经典加里东造山、中欧加里东造山、Appalachian造山。再在这7期造山事件群基础上,结合古地磁、古生物、古地理等资料,重建了新元古代-早古生代末全球板块的拼合过程:罗迪尼亚超大陆从新元古代的~950 Ma开始经历了3个阶段裂解,此时存在泛大洋、莫桑比克洋和古太平洋3个大洋,随后615~560 Ma Iapetus洋打开,~560 Ma 波罗的陆块与西冈瓦纳裂离导致狭窄的Ran洋打开;~540 Ma南半球Brasiliano、东非和Kuunga造山运动导致冈瓦纳大陆分阶段最终完成拼贴;~500 Ma冈瓦纳大陆北缘西段的微陆块群局部向北裂离,导致Rheic洋和Tornquist洋打开,并于~420 Ma随经典加里东造山带和中欧缝合带形成导致Iapetus洋闭合,此时斯瓦尔巴特和英国可能位于格陵兰地盾东南缘,同时冈瓦纳大陆北缘东段华北为代表的微陆块基本拼合在冈瓦纳大陆北缘;此外,虽然425 Ma西伯利亚板块有远离聚合了的劳俄大陆的趋势,但晚奥陶世-早泥盆世南美和北美板块靠近,北美板块与环冈瓦纳北缘西段的地体拼合碰撞。在大约400 Ma时,南、北美洲的混合生物群和古地理重建显示两者非常接近,因此,推测此时存在一个初始的逐步稳定的超大陆的可能,本文称为Carolina超大陆,因为Carolina造山带是这个超大陆最终拼合的地带。并据此判断超大陆旋回为7亿年。

关键词: 早古生代, 造山带, 洋陆格局, 板块重建, 超大陆, Rodinia, Gondwana, Pangea

Abstract:

Paleoproterozoic and Phanerozoic plate tectonics and periodic evolutionary processes have obvious difference, reflecting in the geological records developed in two different plate tectonic regimes. The Early Paleozoic is a transition era of these two regimes, the Early Paleozoic tectonic processes and plate reconstructions are the key to understand tectonic mechanism and cycle of the Earth's plate tectonics. This paper summarizes and compares the global geological events of the Early Paleozoic collisional orogenic belts since the rifting of the Supercontinent Rodinia based on the analysis of the evolutions of the Early Paleozoic collisional orogenic belts, summing up seven Gondwana-, Larussia-, Paleo-Chinese blocks-related collisional or accretionary orogenic events: the Brasiliano Orogeny, East African Orogeny, the Kuunga Orogeny, the Caledonian-stage proto-Tethyan- and Paleo-Asian Ocean-related orogeny in East Asia, and classic Caledonian Orogeny, central Eurasian Caledonian suturing, Appalachian Orogeny. After synthesizing seven-stage orogneic events, based on the combination of paleomagnetism, paleontology and paleogeographic data, this paper reconstructs assembly processes of global plates from the Neoproterozoic to Early Paleozoic as follows. Supercontient Rodinia began to experience three stages of rifting since the Neoproterozoic ~950 Ma, developing the Panthalassa, Mozambique and the Paleo-Pacific oceans. The Iapetus ocean opened in 615-560 Ma. In about 560 Ma the dispersal of the Baltica from the West Gondwana resulted in the opening of the narrow Ran Ocean. The Brasiliano Orogeny, the East African orogeny and the Kuunga orogeny in the southern hemisphere completed the final assembly of the Gondwanaland in ~540 Ma. Some terranes in the western segment of the northern margin of the Gondwana locally drifted away to result inthe opening of the Rheic and the Tornquist oceans since ~500 Ma. In ~420 Ma the formation of the classic Caledonian orogenic belt and the Central Eurasian suture zone closed the Iapetus Ocean. Coevally the Svalbard and the United Kingdom may be located in southeast of the Greenland Shield, and some micro-continental blocks such as the North China block docked in the eastern segment of the northern margin of the Gondwanaland. Since 425 Ma the Siberia plate had a trend away from the assembled Larussia Continent, but the South and North American plates were closer and closer in Late Ordovician-Early Devonian, and it resulted in the collision between the North American plate and the terrances on the northern margin of peri-Gondwana. In about 400 Ma, the mixed biota in the South and North America and palaeogeographic reconstruction shows the South and North America were very closer, so we speculated that one supercontinent may existed and called the Supercontinent Carolina in this paper, because the Carolina orogenic belt is the potential final collisional zone. Based on this supercontinent, this paper proposes that the supercontinent cycle is 700 Myr.

Key words: Early Paleozoic, orogenic belt, ocean-continent configuration, plate reconstruction, supercontinent, Rodinia, Gondwana, Pangea

中图分类号: 

  • P542

[1] 李江海, 牛向龙, Kusky T, 等. 从全球对比探讨华北克拉通早期地质演化与板块构造过程[J]. 地学前缘, 2004, 11(3):273-283. Li Jianghai, Niu Xianglong, Kusky T, et al. Neoarchean Plate Tectonic Evolution of North China and Its Correlation with Global Cratonic Blocks[J]. Earth Science Frontiers, 2004, 11(3):273-283.

[2] Brown M. Metamorphism, Plate Tectonics, and the Supercontinent Cycle[J]. Earth Science Frontiers, 2007, 14(7): 1-18.

[3] Piper J D A.A Planetary Perspective on Earth Evolution: Lid Tectonics Before Plate Tectonics[J]. Tectonophysics, 2013(589): 44-56.

[4] Piper J D A. Continental Velocity Through Geological Time: The Link to Magmatism, Crustal Accretion and Episodes of Global Cooling[J]. Geoscience Frontiers, 2013(4): 7-36.

[5] Rogers J J W, Unrug R, Sultan M. Tectonic Assembly of Gondwana[J]. Journal of Geodynamics, 1995(19): 1-34.

[6] Yakubchuk A. Restoring the Supercontinent Columbia and Tracing Its Fragments After Its Breakup: A New Configuration and A Super-Horde Hypothesis[J]. Journal of Geodynamics, 2010 (50): 166-175.

[7] Rogers J J W, Santosh M. Configuration of Columbia, a Mesoproterozoic Supercontinent[J].Gondwana Research, 2002(5): 5-22.

[8] Zhao G C, Cawood P A, Simon A W, et al. Review of Global 2.1-1.8 Ga Orogen: Implications for a Pre-Rodinia Supercontinent[J]. Earth-Science Reviews, 2002 (59): 125-162.

[9] Zhao G C, Sun M, Wilde S A, et al. A Paleo-Mesoproterozoic Supercontinent: Assembly, Growth and Breakup[J]. Earth-Science Reviews, 2004, 67(1): 91-123.

[10] Dalziel I W D. Overview: Neoproterozoic-Paleozoic Geography and Tectonics: Review, Hypothesis, Environmental Speculation[J]. Geological Society of America Bulletin, 1997, 109(1): 16-42.

[11] Pisarevsky S A, Wingate M T D, Powell C M, et al. Models of Rodinia Assembly and Fragmentation[J]. Geological Society London Special Publications, 2003, 206(1): 35-55.

[12] Li Z X, Bogdanova S V, Collins A S, et al. Assembly, Configuration, and Break-Up History of Rodinia: A Synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210.

[13] Li Z X, Evans D A D, Halverson G P. Neoproterozoic Glaciations in a Revised Global Palaeogeography from the Breakup of Rodinia to the Assembly of Gondwanaland[J]. Sedimentary Geology, 2013, 294(3): 219-232.

[14] Hoffman P F. Did the Breakout of Laurentia Turn Gondwanaland Inside-Out?[J]. Science, 1991, 252(5011): 1409-1412.

[15] Evans D A D.The Palaeomagnetically Viable, Longlived and All-Inclusive Rodinia Supercontinent Reconstruction[J]. Geological Society of London Special Publication, 2009 (327): 371-404.

[16] Stampfli G M, Borel G D.A Plate Tectonic Model for the Paleozoic and Mesozoic Constrained by Dynamic Plate Boundaries and Restored Synthetic Oceanic Isochrons[J].Earth & Planetary Science Letters, 2002, 196(1/2): 17-33.

[17] Stampfli G M, Hochard C, Vérard C, et al. The Formation of Pangea[J]. Tectonophysics, 2013, 593(3): 1-19.

[18] Senshu H, Maruyama S, Rino S. Role of Tonalite-Trodhjemite-Granite(TTG)Crust Subduction on the Mechanism of Supercontinent Breakup[J]. Gondwana Reseach, 2009, 15(3/4): 433-442.

[19] Powell C M, Li Z X, Mcelhinny M W, et al. Paleomagnetic Constraints on Timing of the Neoproterozoic Breakup of Rodinia and the Cambrian Formation of Gondwana[J]. Geology, 1993, 21(10): 889-892.

[20] Dalziel I W D. Overview: Neoproterozoic-Paleozoic Geography and Tectonics: Review, Hypothesis, Environmental Speculation[J]. Geological Society of America Bulletin, 1997, 109(1): 16-42.

[21] Rino S, Kon Y, Sato W. The Grenvillian and Pan-African Orogens: World's Largest Orogenies Through Geologic Time, and Their Implications on the Origin of Superplume[J]. Gondwana Research, 2008, 14(1/2): 51-72.

[22] Evans D A D. Reconstructing Pre-Pangean Supercontinents[J]. Geological Society of America Bulletin, 2013, 125(11/12): 1735-1751.

[23] 陆松年. 初论"泛华夏造山作用"与加里东和泛非造山作用的对比[J]. 地质通报, 2004, 23(增刊2): 952-958. Lu Songnian. Comparison of the Pan-Cathaysian Orogeny with the Caledonian and Pan-African Orogenies[J]. Geological Bulletin of China, 2004, 23(Sup.2): 952-958.

[24] 陆松年, 于海峰, 李怀坤, 等. 中央造山带(中西部)前寒武系地质[M]. 北京: 地质出版社, 2009. Lu Songnian, Yu Haifeng, Li Huaikun, et al. Precambrian Geology of the Central-West Segments of Central Orogenic Belt[M]. Beijing: Geological Publishing House, 2009.

[25] 尹赞勋, 张守信, 谢翠华. 论褶皱幕[M]. 北京: 科学出版社, 1978. Yi Zanxun, Zhang Shouxin, Xie Cuihua. On Folding Stage[M]. Beijing: Science Press, 1978.

[26] Valentino D W, Valentino R W, Hill M L. Paleozoic Transcurrent Conjugate Shear Zones in the Central Appalachian Piedmont of Southeastern Pennsylvania[J]. Journal of Geodynamics, 1995, 19(3/4): 303-324.

[27] Dallmeyer R D, Gee D G. 40Ar/39Ar Mineral Dates from Retrogressed Eclogites within the Baltoscandian Miogeocline: Implications for a Polyphase Caledonian Orogenic Evolution[J]. Geological Society of America Bulletin, 1986 (87): 26-34.

[28] Atherton M P, Ghani A A. Slab Breakoff: A Model for Caledonian, Late Granite Syn-Collisional Magmatism in the Orthotectonic(Metamorphic)Zone of Scotland and Donegal, Ireland[J]. Lithos, 2002, 62(3): 65-85.

[29] Torsvik T H, Rehnström E F.The Tornquist Sea and Baltica-Avalonia Docking[J]. Tectonophysics, 2003, 362(1): 67-82.

[30] Sasseville C, Tremblay A, Clauer N, et al. K-Ar Age Constraints on the Evolution of Polydeformed Fold-Thrust Belts: The Case of the Northern Appalachians(Southern Quebec)[J]. Journal of Geodynamics, 2008, 45(Sup.2/3): 99-119.

[31] Zagorevski A, Staal C R, Mcnicoll V J. Tectonic Architecture of an Arc-Arc Collision Zone, Newfoundland Appalachians[J]. Geological Society of America Abstracts with Programs, 2008, 42(1): 174.

[32] Hibbard J P, Stoddard E F, Secor D T, et al. The Carolina Zone: Overview of Neoproterozoic to Early Paleozoic Peri-Gondwanan Terranes Along the Eastern Flank of the Southern Appalachians[J]. Earth-Science Reviews, 2012(57): 299-339.

[33] Janák M, Roermund H V, Majka J, et al. UHP Metamorphism Recorded by Kyanite-Bearing Eclogite in the Seve Nappe Complex of Northern Jamtland, Swedish Caledonides[J]. Gondwana Research, 2013, 23(3): 865-879.

[34] Schuff M M, Gore J P, Nauman E A. Stratigraphic, Geochemical and U-Pb Zircon Constraints from Slieve Gallion, Northern Ireland: A Correlation of the Irish Caledonian Arcs[J]. Journal of the Geological Society, 2013, 170(5): 737-752.

[35] Cawood P A, Nemchin A A, Freeman M, et al. Linking Source and Sedimentary Basin: Detrital Zircon Record of Sediment Flux Along a Modern River System and Implications for Provenance Studies[J]. Earth & Planetary Science Letters, 2003, 210(Sup.1/2): 259-268.

[36] Owona S, Schulz B, Ratschbacher L, et al. Pan-African Metamorphic Evolution in the Southern Yaounde Group(Oubanguide Complex, Cameroon)as Revealed by EMP-Monazite Dating and Thermobarometry of Garnet Metapelites[J]. Journal of African Earth Sciences, 2011, 59(1): 125-139.

[37] Stampfli G M, Hochard C, Vérard C, et al. The Formation of Pangea[J]. Tectonophysics, 2013, 593(3): 1-19.

[38] Waele B D, Johnson S P, Pisarevsky S A. Palaeoproterozoic to Neoproterozoic Growth and Evolution of the Eastern Congo Craton: Its Role in the Rodinia Puzzle[J]. Precambrian Research, 2008, 160(160): 127-141.

[39] Bingen B, Jacobs J, Viola G, et al. Geochronology of the Precambrian Crust in the Mozambique Belt in NE Mozambique, and Implications for Gondwana Assembly[J]. Precambrian Research, 2009, 170(3): 231-255.

[40] Collins A S, Clark C, Plavsa D. Peninsular India in Gondwana: The Tectonothermal Evolution of the Southern Granulite Terrain and Its Gondwanan Counterparts[J]. Gondwana Research, 2014, 25(1): 190-203.

[41] 王行军, 王根厚, 专少鹏, 等. 中天山晚奥陶世碰撞造山: 来自变质花岗岩地球化学及年代学证据[J]. 岩石学报, 2011, 27(7): 2203-2212. Wang Xingjun, Wang Genhou, Zhuan Shaopeng, et al. Late Ordovician Collision and Orogen in Middle Tianshan: Evidences of Geochemical Analyses and Geochronology on Metamorphosed Granitoid Rocks[J]. Acta Petrologica Sinica, 2011, 27(7): 2203-2212.

[42] 朱志新. 新疆南天山地质组成和构造演化[D]. 北京:中国地质科学院, 2007. Zhu Zhixin. The Geological Components and Tectonic Evolution of South Tianshan, Xinjiang[D]. Beijing: Chinese Academy of Geological Sciences, 2007.

[43] 罗明非. 甘肃党河南山早古生代大地构造性质研究[D]. 成都: 成都理工大学, 2010. Luo Mingfei. Research on Early Palaeozoic Tectonic Characters of Danghenanshan, Gansu[D].Chengdu:Chengdu University of Technology, 2010.

[44] 王涛, 王晓霞, 田伟, 等. 北秦岭古生代花岗岩组合、岩浆时空演变及其对造山作用的启示[J]. 中国科学:D辑, 2009(7): 949-971. Wang Tao, Wang Xiaoxia, Tian Wei, et al. North Qinling Palezoic Granite Associations and Their Variation in Space and Time: Implication for Orogenic Processes in the Orogens of Central China[J]. Science in China:Series D, 2009 (7): 949-971.

[45] 车自成, 罗金海, 刘良, 等. 中国及其邻区区域大地构造学[M]. 北京: 科学出版社, 2011: 1-466. Che Zicheng, Luo Jinhai, Liu Liang, et al. Tectonics in China and Its Adjacent Area[M]. Beijing: Science Press, 2011: 1-466.

[46] Meng F, Zhang J, Cui M. Discovery of Early Paleozoic Eclogite from the East Kunlun, Western China and Its Tectonic Significance[J]. Gondwana Research, 2013, 23(2): 825-836.

[47] Meng F, Cui M, Wu X, et al. Heishan Mafic-Ultramafic Rocks in the Qimantag Area of Eastern Kunlun, NW China: Remnants of an Early Paleozoic Incipient Island Arc[J]. Gondwana Research, 2013, 27(2): 745-759.

[48] Zhou J B, Wilde S A, Zhao G C, et al. Shrimp U-Pb Zircon Dating of the Neoproterozoic Penglai Group and Archean Gneisses from the Jiaobei Terrane, North China, and Their Tectonic Implications[J]. Precambrian Research, 2008, 160(Sup.3/4): 323-340.

[49] Zhou J B, Wilde S A.The Crustal Accretion History and Tectonic Evolution of the NE China Segment of the Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23(4): 1365-1377.

[50] Fritz H, Abdelsalam M, Ali K A, et al. Orogen Styles in the East African Orogen: A Review of the Neoproterozoic to Cambrian Tectonic Evolution[J]. Journal of African Earth Sciences, 2013, 86(4): 65-106.

[51] Hibbard J P, Van Staal C R.A Paleogeographical Review of the Peri-Gondwanan Realm of the Appalachian Orogen[J]. Canadian Journal of Earth Sciences, 2012, 49(1): 259-288.

[52] Fitzsimons I C W. Proterozoic Basement Provinces of Southern and Southwestern Australia, and Their Correlation with Antarctica[J]. Geological Society of London Special Publications, 2003, 206(1): 93-130.

[53] Peter A, Cawood, Craig Buchan. Linking Accretionary Orogenesis with Supercontinent Assembly[J]. Earth-Science Reviews, 2007, 82(Sup.3/4): 217-256.

[54] Collins A S, Clark C, Plavsa D. Peninsular India in Gondwana: The Tectonothermal Evolution of the Southern Granulite Terrain and Its Gondwanan Counterparts[J]. Gondwana Research, 2014, 25(1): 190-203.

[55] Meert J G.A Synopsis of Events Related to the Assembly of Eastern Gondwana[J]. Tectonophysics, 2003, 362(1/2/3/4): 1-40.

[56] 徐学义, 何世平, 王洪亮, 等. 中国西北部地质概论[M]. 北京: 科学出版社, 2008: 1-338. Xu Xueyi, He Shiping, Wang Hongliang, et al. An Introduction to the Geology in Northwest China[M].Beijing: Science Press, 2008: 1-338.

[57] Powell C M, Li Z X, Mcelhinny M W, et al. Palaeomagnetic Constraints of the Neoproterozoic Breakup of Rodinia and the Cambrian Formation of Gondwana[J]. Geology, 1993, 21(10): 889-892.

[58] Yoshida M. Assembly of East Gondwana During the Mesoproterozoic and Its Rejuvenation During the Pan-African Period[J]. Geolological Society of India Memoirs, 1995(34): 22-45.

[59] Veevers J J. Pan-African Is Pan-Gondwanaland: Oblique Convergence Drives Rotation During 650-500 Ma Assembly[J]. Geology, 2003,31:501-504.

[60] Veevers J J. Gondwanaland from 650-500 Ma Assembly Through 320 Ma Merger in Pangea to 185-100 Ma Breakup: Supercontinental Tectonics Via Stratigraphy and Radiometric Dating[J]. Earth-Science Reviews, 2004, 68(Sup.1/2): 1-132.

[61] Squire R J, Campbell I H, Allen C M, et al. The Transgondwanan Supermountain: A Trigger for the Cambrian Explosion[J]. Geochmica et Cosmochimica Acta, 2006, 70(18): A608.

[62] Fitzsimons I C W, Hulscher B. Out of Africa: Detrital Zircon Provenance of Central Madagascar and Neoproterozoic Terrane Transfer Across the Mozambique Ocean[J]. Terra Nova, 2005, 17(3): 224-235.

[63] Meert J G, Lieberman B S.The Neoproterozoic Assembly of Gondwana and Its Relationship to the Ediacaran-Cambrian Radiation[J]. Gondwana Research, 2008, 14(1/2): 5-21.

[64] Torsvik T H, Rehnstrom E F.The Tornquist Sea and Baltica-Avalonia Docking[J]. Tectonophysics, 2003, 362(1): 67-82.

[65] Liu X, Zhao Y, Hu J. The C. 1 000-900 Ma and C. 550-500 Ma Tectonothermal Events in the Prince Charles Mountains-Prydz Bay Region, East Antarctica, and Their Relations to Supercontinent Evolution[J]. Geological Society London Special Publications, 2013, 383(1): 95-112.

[66] Cocks L R M, Torsvik T H. The Palaeozoic Geography of Laurentia and Western Laurussia: A Stable Craton with Mobile Margins[J]. Earth-Science Reviews, 2011, 106(1/2): 1-51.

[67] Golonka J, Gaw A. Plate Tectonic Evolution of the Southern Margin of Laurussia in the Paleozoic[M].Vienna:Intech,2012:261-282.

[68] Yao W H, Li Z X, Li W X, et al. Detrital Provenance Evolution of the Ediacaran-Silurian Nanhua Foreland Basin, South China[J]. Gondwana Research, 2014, 28(4):1449-1465.

[69] Boucot A J, Scotese C R. Pangaean Assembly and Dispersal with Evidence from Global Climate Belts[J]. Journal of Palaeogeography, 2012, 1(1): 5-13.

[70] 高长林, 单翔麟, 秦德余. 中国古生代盆地基底大地构造特征[J]. 石油实验地质, 2005, 27(6): 551-558. Gao Changlin, Shan Xianglin, Qin Deyu.The Basement Tectonic Characteristics of the Paleozoic Basin, China[J]. Petroleum Geology Experiment, 2005, 27(6): 551-558.

[71] 董顺利, 李忠, 高剑, 等. 阿尔金祁连昆仑造山带早古生代构造格架及结晶岩年代学研究进展[J]. 地质论评, 2013, 59(4): 731-746. Dong Shunli, Li Zhong, Gao Jian, et al. Progress of Studies on Early Paleozoic Tectonic Framework and Crystalline Rock Geochronology in Altun-Qilian-Kunlun Orogen[J]. Geological Review, 2013, 59(4): 731-746.

[72] Murphy J B, Nance R D, Cawood P A. Contrasting Modes of Supercontinent Formation and the Conundrum of Pangea[J]. Gondwana Research, 2009, 15(Sup.3/4): 408-420.

[73] 蔡志慧, 许志琴, 段向东, 等. 青藏高原东南缘滇西早古生代早期造山事件[J]. 岩石学报, 2013, 29(6): 2123-2140. Cai Zhihui, Xu Zhiqin, Duan Xiangdong, et al. Early Stage of Early Paleozoic Orogenic Event in Western Yunnan Province, Southeastern Margin of Tibet Plateau[J]. Acta Petrologica Sinica, 2013, 29(6): 2123-2140.

[74] 李江海, 王洪浩, 李维波, 等. 显生宙全球古板块再造及构造演化[J]. 石油学报, 2014, 35(2): 208-218. Li Jianghai, Wang Honghao, Li Weibo, et al. Discussion on Global Tectonics Evolution from Plate Reconstruction in Phanerozoic[J]. Acta Petrolei Sinica, 2014, 35(2): 208-218.

[75] Li Z X, Mca C, Powell.An Outline of the Palaegeographic Evolution of the Australian Region Since the Beginning of the Neoproterozoic[J]. Earth-Science Reviews, 2001, 53(3): 237-277.

[76] Nance R, Worsley T, Moody J. The Supercontinent Cycle[J]. Scientific American, 1988, 259(1): 72-79.

[77] Condie K C. Earth as an Evolving Planetary System[M]. 2nd ed. New York:Acadmic Press the Netherlands, 2011:1-574.

[78] Haq B, Stephen R S. A Chronology of Paleozoic Sea-Level Changes[J]. Science, 2008 (322): 64-68.

[79] Boucot A J, Gray J.A Paleozoic Pangaea[J]. Science, 1983, 222(4624): 571-581.

[80] Livermore R A, Smith A G, Briden J C. Palaeomagnetic Constraints on the Distribution of Continents in the Late Silurian and Early Devonian[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 1985, 309(1138): 29-56.

[81] Lewandowski M. Assembly of Pangea: Combined Paleomagnetic and Paleoclimatic Approach[J]. Advances in Geophysics, 2003, 46(1): 199-236.

[82] Piper J D A.A~90°Late Siluriane-Early Devonian Apparent Polar Wander Loop: The Latest Inertial Interchange of Planet Earth? [J]. Earth and Planetary Science Letters, 2006 (250): 345-357.

[83] Golonka J, Gaweda A. Plate Tectonic Evolution of the Southern Margin of Laurussia in the in the Paleozoic[M]. Intech:Tectonics-Recent Advances, 2012: 261-282.

[84] Ford D, Golonka J. Phanerozoic Paleogeography, Paleoenvironment and Lithofacies Maps of the Circum-Atlantic Margins[J]. Marine and Petroleum Geology, 2003(20): 249-285.

[85] Hibbard J P, Stoddard E F, Secor D T, et al. The Carolina Zone: Overview of Neoproterozoic to Early Paleozoic Peri-Gondwanan Terranes Along the Eastern Flank of the Southern Appalachians[J]. Earth-Science Reviews, 2002, 57(3): 299-339.

[86] Boucot A J, 陈旭, Scotese C R. 显生宙全球古气候重建[M]. 北京: 科学出版社, 2009:1-173. Boucot A J, Chen Xu, Scotese C R. Global Paleoclimate Reconstruction in Phanerozoic[M].Beijing: Science Press, 2009: 1-173.

[87] Scotese C R, Boucot A J, McKerrow W S. Gondwanan Palaeogeography and Palae-Oclimatology[J]. Journal of African Earth Sciences, 1999, 28(1): 99-114.

[1] 许志河, 孙丰月, 顾观文, 牛兴国, 钱 烨. 中亚造山带岩浆铜镍硫化物矿床深部找矿:以红旗岭铜镍矿床为例[J]. 吉林大学学报(地球科学版), 2022, 52(5): 1649-1657.
[2] 丁清峰, 吴睿哲, 张强, 周轩. 青海东昆仑洪水河铁矿床新元古代含铁建造铁同位素特征及其成因意义[J]. 吉林大学学报(地球科学版), 2022, 52(5): 1497-1511.
[3] 赵拓飞, 林博磊, 陈昌昕, 王超, 李良.

青海东昆仑西段阿克楚克赛地区新元古代片麻状黑云二长花岗岩成因及其地质意义:地球化学、年代学及Hf同位素制约 [J]. 吉林大学学报(地球科学版), 2022, 52(5): 1540-1557.

[4] 邓红宾, 李培龙, 魏华财, 何文劲, 杨鹏涛, 李宁, 唐华. 东昆仑造山带低山头花岗岩体岩石地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(3): 767-782.
[5] 谭晓淼, 高锐, 王海燕, 侯贺晟, 李洪强, 匡朝阳. 中亚造山带东段深地震反射剖面大炮揭露下地壳与Moho结构——数据处理与初步解释[J]. 吉林大学学报(地球科学版), 2021, 51(3): 898-908.
[6] 谢樊, 王海燕, 侯贺晟, 高锐. 中亚造山带东段浅表构造速度结构——深地震反射剖面初至波层析成像的揭露[J]. 吉林大学学报(地球科学版), 2021, 51(2): 584-596.
[7] 邹国庆, 余牛奔, 孙国庆, 黄修保, 尼加提·阿布都逊, 卢观送. 东准噶尔奥依托浪格地区石炭纪双峰式火山岩地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2021, 51(2): 455-472.
[8] 董志国, 张连昌, 董飞羽, 张帮禄, 谢月桥, 查斌, 彭自栋, 王长乐. 西昆仑穆呼锰矿床地质特征、控矿因素及成矿模式[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1358-1372.
[9] 黄式庭, 于晓飞, 吕志成, 刘家军, 李永胜, 杜泽忠, 吕鑫, 孙海瑞, 杜轶伦. 甘肃北山老金厂金矿床载金矿物特征、原位硫同位素组成及其对成矿的指示意义[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1387-1403.
[10] 孙海瑞, 吕志成, 于晓飞, 李永胜, 杜泽忠, 吕鑫, 公凡影. 甘肃柳园地区早二叠世正长花岗斑岩脉锆石U-Pb年代学、岩石地球化学特征——对北山造山带晚古生代构造背景的指示[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1433-1449.
[11] 王德远, 续海金, 王攀, 贾敏, 高占冬. 大陆造山带深熔垮塌的岩石学、地球化学证据:以北大别深熔混合岩为例[J]. 吉林大学学报(地球科学版), 2020, 50(3): 675-693.
[12] 贾莹刚, 赵军, 蒋磊, 关力伟, 王小玄, 何亮. 伊犁地块北缘早古生代构造属性:来自温泉地区闪长岩的证据[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1015-1038.
[13] 张强, 丁清峰, 宋凯, 程龙. 东昆仑洪水河铁矿区狼牙山组千枚岩碎屑锆石U-Pb年龄、Hf同位素及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1085-1104.
[14] 吕斌, 王涛, 童英, 张磊, 杨奇荻, 张建军. 中亚造山带东部岩浆热液矿床时空分布特征及其构造背景[J]. 吉林大学学报(地球科学版), 2017, 47(2): 305-343.
[15] 齐忠友, 冯志强, 温泉波, 张铁安, 刘宾强, 李小玉, 杜兵盈. 东北地区嫩江东北部早古生代闪长岩的成因探讨:锆石U-Pb年代学和地球化学证据[J]. 吉林大学学报(地球科学版), 2017, 47(1): 113-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 薛永超, 程林松. 白豹油田长8油藏成岩储集相[J]. J4, 2011, 41(2): 365 -371 .
[2] 姜纪沂, 张宇东, 谷洪彪, 左兰丽. 基于灰色关联熵的地下水环境演化模式判别模型研究[J]. J4, 2009, 39(6): 1111 -1116 .
[3] 丛源, 赵鹏大, 陈建平, 董庆吉. 中国铝土矿床品位吨位模型[J]. J4, 2009, 39(6): 1042 -1048 .
[4] 刘建峰,迟效国,周燕,王铁夫,金巍,周建波,董春艳,黎广荣. 小兴安岭东北部金林岩体全岩-角闪石Rb-Sr年龄[J]. J4, 2005, 35(06): 690 -0693 .
[5] 黄冠星, 孙继朝, 张英, 刘景涛, 张玉玺, 荆继红. 珠江三角洲污灌区地下水重金属含量及其相互关系[J]. J4, 2011, 41(1): 228 -234 .
[6] 毕海涛, 张兰英, 刘娜, 杨国军, 徐国欣, 朱博麟. 无机材料对PVA-H3BO3包埋固定化方法的改进[J]. J4, 2011, 41(1): 241 -246 .
[7] 和钟铧,刘招君,郭宏伟,侯 伟,董林森. 漠河盆地中侏罗世沉积源区分析及地质意义[J]. J4, 2008, 38(3): 398 -0404 .
[8] 陈祥, 许兆义, 张杰坤. 大型地下水封石油洞库场址评价标准及评价方法[J]. J4, 2012, 42(1): 177 -183 .
[9] 康立明,任战利. 多参数定量研究流动单元的方法--以鄂尔多斯盆地W93井区为例[J]. J4, 2008, 38(5): 749 -0756 .
[10] 王祝文, 丁阳, 刘菁华, 田钢. γ能谱测量探测良渚古遗址的影响因素分析及数据处理[J]. J4, 2010, 40(2): 439 -446 .