吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (4): 1071-1084.doi: 10.13278/j.cnki.jjuese.20170169

• 地质与资源 • 上一篇    下一篇

大兴安岭北段宝兴沟金矿床成矿流体特征及矿床成因

李向文1, 张志国2, 王可勇3, 孙加鹏3, 杨吉波1, 杨贺3   

  1. 1. 武警黄金第三支队, 哈尔滨 150086;
    2. 武警警种学院, 北京 102202;
    3. 吉林大学地球科学学院, 长春 130061
  • 收稿日期:2017-10-25 出版日期:2018-07-26 发布日期:2018-07-26
  • 作者简介:李向文(1976-),男,高级工程师,博士,主要从事矿产勘查与管理方面的研究,E-mail:872416149@qq.com
  • 基金资助:
    中国地质调查局项目(12120115041801);武警黄金指挥部黄金工作专项(2008-20140301)

Characteristics of Ore-Forming Fluid and Genesis of Baoxinggou Gold Deposit in North of Great Xing'an Range

Li Xiangwen1, Zhang Zhiguo2, Wang Keyong3, Sun Jiapeng3, Yang Jibo1, Yang He3   

  1. 1. No.3 Gold Geological Party of CAPF, Harbin 150086, China;
    2. Category Institute of CAPF, Beijing 102202, China;
    3. College of Earth Sciences, Jilin University, Changchun 130061, China
  • Received:2017-10-25 Online:2018-07-26 Published:2018-07-26
  • Supported by:
    Supported by Project of China Geological Survey (12120115041801) and Gold Job of Golden Commend of the Armed Police(2008-20140301)

摘要: 宝兴沟金矿床是大兴安岭北部上黑龙江成矿带内大型金矿床之一,矿体主要产于下侏罗统二十二站组砂岩与早白垩世石英闪长岩、闪长玢岩内外接触带内,其热液成矿作用可划分为:黄铁矿±毒砂-石英(Ⅰ)、多金属硫化物-石英(Ⅱ)及少硫化物-碳酸盐(Ⅲ)3个阶段。流体包裹体岩相学研究表明:Ⅰ阶段矿石主要发育气液两相(LV)、少量含CO2三相包裹体(HCO2)及富气相包裹体(FV);Ⅱ阶段矿石中主要发育LV及少量HCO2包裹体;Ⅲ阶段矿石中只发育LV包裹体。测温结果显示:Ⅰ、Ⅱ阶段包裹体总体均一温度峰值集中于225.00~300.00℃,盐度(w(NaCl))为2.00%~10.00%;Ⅲ阶段均一温度峰值集中于175.00~225.00℃,盐度为4.00%~8.00%;成矿流体为简单的含CO2中低温、低盐度的NaCl-H2O热液体系,总体具有从成矿早期到晚期均一温度、盐度逐渐降低的特征。氢、氧同位素分析结果显示,Ⅰ、Ⅱ阶段成矿流体δDSMOW为-131.00‰~-108.00‰、δ18OSMOW为1.00‰~4.00‰,Ⅲ阶段δDSMOW为-108.00‰、δ18OSMOW为-1.89‰,表明早期以岩浆水为主,晚期逐渐演化为与大气降水混合热液。矿石中黄铁矿(毒砂)δ34SV-CDT为1.50‰~4.20‰,显示其物质来源以深源岩浆为主。综合分析认为,区内金成矿作用与早白垩世(石英)闪长岩、闪长玢岩侵入活动有直接关系,矿床属中低温岩浆热液成因类型。

关键词: 宝兴沟金矿床, 流体包裹体, 成矿流体, 矿床成因, 大兴安岭

Abstract: The Baoxinggou gold deposit is a large-scale deposit in the upper Heilongjiang metallogenic belt in the north of Great Xing'an Range. The ore bodies mainly occur in the contact zone between the sandstone of the Early Jurassic Ershierzhan Formation and the Early Cretaceous quartz diorite, diorite porphyrite. The hydrothermal mineralization can be classified into three stages:pyrite±arsenopyrite-quartz (Ⅰ), polysulfide-quartz (Ⅱ) and sulfide-poor carbonate (Ⅲ). The petrographic study of the fluid inclusions showed that there were aqueous two phases (LV type), fewer CO2-bearing three phases (HCO2 type),and vapor-rich phases (FV type) fluid inclusions developed in the stage I; aqueous two phases (LV type) and fewer CO2-bearing three phases (HCO2 type) in the stage Ⅱ; only aqueous two phases (LV type) in the stage Ⅲ. The micro-thermometric research revealed that the peak homogeneous temperature of fluid inclusions in the stageⅠandⅡ was range of 225.00-300.00℃, the salinity was range of 2.00%-10.00% NaCl, and those in the stage Ⅲ were 175.00-225.00℃ and 4.00%-8.00% NaCl correspondingly. The ore-forming fluids were of CO2-bearing medium-low temperature and low salinity NaCl-H2O-CO2 system solutions; and with the progressing of mineralization, the temperature and salinity gradually decreased. The hydrogen and oxygen isotope analysis showed that the δDSMOW of mineralization stageⅠand stageⅡvaried in the range of -131.00‰-108.00‰, δ18OSMOW varied in the range of 1.00‰-4.00‰, and the corresponding average values in the stage Ⅲ were -108.00‰ (δDSMOW)and -1.89‰ (δ18OSMOW), meaning that magmatic derived solutions dominated in the early stages of mineralization, while meteoric water gradually played an important role in the later stage of mineralization. The sulfur isotope analysis showed that δ34S of pyrite was range of 1.50‰-4.20‰, indicating the metals mainly from deep-sourced magmas. All these lead to the conclusion that Baoxinggou gold deposit is of medium-low temperature magmatic hydrothermal origin which is directly related to the quartz diorite and diorite porphyritic magmatism.

Key words: Baoxinggou gold deposit, fluid inclusion, ore-forming fluid, ore genesis, Great Xing'an Range

中图分类号: 

  • P618.51
[1] 武广,孙丰月,朱群,等. 上黑龙江盆地金矿床地质特征及成因探讨[J]. 矿床地质, 2006,25(3):215-230. Wu Guang, Sun Fengyue, Zhu Qun, et al. Geological Characteristics and Genesis of Gold Deposits in Upper Heilongjiang Basin[J]. Mineral Deposits, 2006, 25(3):215-230.
[2] 李向文. 上黑龙江成矿带金矿床成矿规律与找矿预测研究[D]. 长春:吉林大学, 2015:1-200. Li Xiangwen. Metallogenic Regularities of Gold Deposits in Upper Heilongjiang Metallogenic Belt and Its Prospecting[D]. Changchun:Jilin University, 2015:1-200.
[3] 孙琦,任云生,杨群,等.黑龙江省漠河县洛古河多金属矿床成因与成矿时代[J].矿物岩石,2015,35(3):20-28. Sun Qi, Ren Yunsheng, Yang Qun, et al. OreGenesis and Metallogenic Age of Luoguhe Polymetallic Deposit in Mohe Area, Heilongjiang Province[J]. Journal of Mineralogy and Petrology, 2015, 35(3):20-28.
[4] 赵广江,侯玉树,杨继权. 黑龙江二十一站金、铜矿床地质特征及成矿模式[J]. 西北地质,2006,39(4):33-39. Zhao Guangjiang, Hou Yushu, Yang Jiquan.Geological Characteristics and Metallogentic Model of Ershiyuzhan Gold and Copper Deposits in Heilongjiang Province[J]. Northwestern Geology, 2006, 39(4):33-39.
[5] 丁清峰,孙丰月,梁海军. 内蒙古虎拉林金矿矿化富集规律和找矿远景评价[J]. 世界地质,2007,26(4):397-402. Ding Qingfeng, Sun Fengyue, Liang Haijun. Laws of Mineralization Enrichment and Prospect Assessment in Hulalin Gold Deposit in Inner Mongolia[J]. Global Geology, 2007,26(4):397-402.
[6] 武广,孙丰月,赵财胜,等. 额尔古纳成矿带西北部金矿床流体包裹体研究[J]. 岩石学报,2007,23(9):2227-2240. Wu Guang, Sun Fengyue, Zhao Caisheng, et al. Fluid Inclusion Study on Gold Depodits in Northwestern Erguna Metallogenic Belt[J]. Acta Pertologica Sinica, 2007,23(9):2227-2240.
[7] 李向文,杨言辰,叶松青,等. 黑龙江省塔河县十五里桥金矿床地质特征及控矿因素[J]. 地质与勘探,2014,50(1):77-87. Li Xiangwen, Yang Yanchen, Ye Songqing, et al. Geological Characteristics and Ore-Controlling Factors of the Shiwuliqiao Gold Deposit in Tahe, Heilongjiang Province[J]. Geology and Exploration, 2014, 50(1):77-87.
[8] 王献忠,宋贵斌,公维国,等. 黑龙江塔河宝兴沟金矿床地质特征及流体包裹体研究[J]. 黄金, 2014, 35(4):19-24. Wang Xianzhong, Song Guibin, Gong Weiguo, et al. Study on Geological Characteristics and Fluid Inclusions of Baoxinggou Gold Deposit in Tahe, Heilongjiang Province[J]. Gold, 2014, 35(4):19-24.
[9] 申名国,卢彦达,苏燕平,等. 宝兴沟金矿区土壤地球化学测量及其应用效果[J]. 黄金,2016,37(11):5-8. Shen Mingguo, Lu Yanda, Su Yanping, et al. The Geochemical Character and the Application Effect of the Baoxinggou Gold Deposit[J]. Gold,2016,37(11):5-8.
[10] 赵炳新,徐伦先,公维国,等. 黑龙江宝兴沟金矿床化探异常特征及控矿因素分析[J].黄金科学技术,2010,18(2):6-11. Zhao Bingxin, Xu Lunxian, Gong Weiguo, et al. Analysis of Geochemical Anomaly Characteristics and Ore-Controlling Factors for Baoxinggou Gold Deposit in Heilongjiang Province[J]. Gold Science and Technology, 2010,18(2):6-11.
[11] 李向文,杨言辰,王献忠,等. 黑龙江省塔河县宝兴沟金矿床地质特征与成矿构造环境[J].吉林大学学报(地球科学版), 2012,42(6):1700-1710. LI Xiangwen, Yang Yanchen, Wang Xianzhong, et al. Discussion on Geology Characters and Metallogenic Tectonic Environment About Baoxinggou Gold Deposit in Tahe, Heilongjiang Province[J]. Journal of Jilin University (Earth Science Edition), 2012,42(6):1700-1710.
[12] 张纯歌,李庆录,宋贵斌,等. 黑龙江二十一站-宝兴沟(铜)金矿床特征及其热液成矿系统[J].世界地质,2012,31(3):505-514. Zhang Chunge, Li Qinglu, Song Guibin, et al. Characteristics of the 21 Site-Baoxinggou (Cu)-Au Deposit and Its Hydrothermal Ore-Forming System of Heilongjiang[J]. Global Geology, 2012, 31(3):505-514.
[13] 周传芳,公维国,宋丙剑,等. 黑龙江省宝兴沟金矿成矿地质条件及成因探讨[J].地质与资源,2012,21(3):271-277. Zhou Chuanfang, Gong Weiguo, Song Bingjian, et al. Geology and Metallogenesis of the Baoxinggou Gold Deposit in Heilongjiang Province.[J]. Gelolgy and Resources, 2012,21(3):271-277.
[14] 黄始琪,董树文,胡健民,等.蒙古-鄂霍次克构造带的形成与演化[J].地质学报, 2016,90(9):2192-2205. Huang Shiqi, Dong Shuwen, Hu Jianmin, et al. The Formation and Tectionic Evolution of the Mongol-Okhotsk Belt[J]. Acta Geologica Sinica, 2016,90(9):2192-2205.
[15] 武广,王国瑞,刘军,等.大兴安岭北部主要金属矿床成矿系列和区域矿床成矿谱系[J].矿床地质,2014,33(6):1127-1150. Wu Guang, Wang Guorui, Liu Jun, et al. Metallogenic Series and Ore-Forming Pedigree of Main Ore Deposits in Northerm Great Xing'an Range[J]. Mineral Deposits, 2014, 33(6):1127-1150.
[16] 王可勇,万多,刘正宏,等.辽宁丹东四道沟金矿床构造控矿规律及其机制分析[J].吉林大学学报(地球科学版),2011,41(4):1048-1054. Wang Keyong, Wan Duo, Liu Zhenghong, et al. Analysis of Structural Ore -Controlling Rules and Mechanism of the Sidaogou Gold Deposit in Dandong City, Liaoning Province[J]. Journal of Jilin University (Earth Science Edtion),2011,41(4):1048-1054.
[17] 张文淮,陈紫英,张恩世,等.流体包裹体地质学[M].武汉:中国地质大学出版社,1993. Zhang Wenhuai, Chen Ziying, Zhang Enshi, et al. Fluid Inclusion Geology[M]. Wuhan:China University of Geosciences Press,1993.
[18] 刘斌,沈昆.流体包裹体热力学[M].北京:地质出版社,1999. Liu Bin, Shen Kun. Thermodynamics of Fluid Inclusion[M]. Beijing:Geological Publishing House, 1999.
[19] 邵洁涟,梅建明.浙江火山岩区金矿床的矿物包裹体标型特征研究及其成因与找矿意义[J].矿物岩石,1986,6(3):103-111. Shao Jielian, Mei Jianming. Study on Typomorphic Charcateristics of Mineral Inchlusion in Gold Depodites from Volcanic Terrain in Zhejiang and Its Genetic and Prospecting Significance[J]. Minerals and Rocks, 1986, 6(3):103-111.
[20] Clayton R N, O'Neil J R, Mayeda T K. Oxy-genIsotope Exchange Between Quartz and Water[J]. Journal of Geophysical Research, 1972, 77(17):3057-3067.
[21] 张朋,杨宏智, 李斌,等.辽东青城子矿集区姚家沟钼矿床成矿物质来源、成矿年代及成矿动力学背景[J]. 吉林大学学报(地球科学版), 2016, 46(6):1684-1696. Zhang Peng, Yang Hongzhi, Li Bin, et al. Ore Source, Ore-Forming Age and Geodynamic Setting of Yaojiagou Molybdenum Deposit in Qingchengzi Ore-Clustered Area, Eastern Liaoning Province[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6):1684-1696.
[22] 李锦轶,莫申国,和政军,等.大兴安岭北段左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约[J].地学前缘, 2004, 11(3):157-167. Li Jinyi, Mo Shenguo, He Zhengjun, et al. The Timing of Crustal Sinistral Strike Slip Movement in the Northern Great Khing'an Ranges and Its Constraint on Reconstruction of the Crustal Tectonic Evolution of NE China and Adjacent Areas Since the Mesozoic[J]. Earth Science Frontiers, 2004, 11(3):157-167.
[23] 张顺,林春明,吴朝东,等. 黑龙江漠河盆地构造特征与成盆演化[J]. 高校地质学报, 2003,9(3):411-418. Zhang Shun, Lin Chunming, Wu Chaodong, et al. Tectonic Characteristics and Basin Evolution of the Mohe Basin, Heilongjiang Province[J]. Gelolgical Journal of China Universities, 2003,9(3):411-418.
[24] 许文良,王枫,裴福萍,等.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报,2013,29(2):339-353. Xu Wenliang, Wang Feng, Pei Fuping, et al. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China:Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations[J]. Acta Petrologica Sinica, 2013, 29(2):339-353.
[25] 刘勃然,李伟,张守志,等. 大兴安岭北段伸展构造[J]. 吉林大学学报(地球科学版),2016,46(5):1440-1448. Liu Boran, Li Wei, Zhang Shouzhi, et al. Extensional Detachment, Northern Great Xing'an Ranges, NE China[J]. Journal of Jilin University (Earth Science Edition),2016,46(5):1440-1448.
[26] 吕斌,王涛,童英,等. 中亚造山带东部岩浆热液矿床时空分布特征及其构造背景[J]. 吉林大学学报(地球科学版),2017,47(2):305-343. Lü Bin, Wang Tao, Tong Ying, et al. Spatial Temporal Distribution and Tectonic Settings of Magmatic-Hydrothermal Ore Deposits in the Eastern Central Asia Orogen Belt[J]. Journal of Jilin University(Earth Science Edtion), 2017,47(2):305-343.
[27] 王晰,段明新,任云生,等.内蒙古额尔古纳地区八大关铜钼矿床流体包裹体特征与成矿时代[J]. 吉林大学学报(地球科学版),2016,46(5):1354-1367. Wang Xi, Duan Mingxin, Ren Yunsheng, et al. Characteristics of Fluid Inclusions and Mineralization Age of Badaguan Cu-Mo Deposit in Erguna Area, Inner Mongolia[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(5):1354-1367.
[28] 张德会. 流体的沸腾和混合在热液成矿中的意义[J]. 地质科学发展,1997,12(6):546-552. Zhang Dehui. Some New Advances in Ore-Forming Fluid Geochemistry on Boiling and Mixing of Fluids During the Processes of Hydrothermal Deposits[J]. Advance in Earthsciences,1997,12(6):546-552.
[29] 卢焕章,范宏瑞,倪培,等. 流体包裹体[M]. 北京:科学出版社,1993. Lu Huanzhang, Fan Hongrui, Ni Pei, et al. Fluid Inclusion[M]. Beijing:Science Press,1993.
[30] 陈衍景,倪培,范宏瑞,等. 不同类型热液金矿系统的流体包裹体特征[J]. 岩石学报,2007,23(9):2085-2108. Chen Yanjing, Ni Pei, Fan Hongrui. et al. Diagnostic Fluid Inclusions of Different Types Hydrothermal Gold Deposits[J]. Acta Parologica Sinica, 2007, 23(9):2085-2108.
[31] Shepherd T J, Rankin A H, Alderton D H M. A Practicguide to Fluid Inclusion Studies[M]. New York:Blackie & Son Limited,1985:1-239.
[32] Chaussidon M, Lorand J P. Sulphur Isotope Com-position of Orogenic Spinel Herzolite Massifs from Ariege(North-Eastern Pyrenees, France):An Ion Microprobe Study[J]. Geochimica et Cosmochimica Acta, 1990,54(10):2835-2846.
[33] 高永宝,李文渊,钱兵,等.新疆维宝铅锌矿床地质、流体包裹体和同位素地球化学特征[J]. 吉林大学学报(地球科学版), 2014, 44(4):1153-1165. Gao Yongbao, Li Wenyuan, Qian Bing, et al. Geology, Fluid Inclusions and S, Pb Isotopic Geochemistry of the Weibao Zn-Pb Deposit in Qimantage, Xinjiang[J]. Journal of Jilin University(Earth Science Edition),2014,44(4):1153-1165.
[34] 陈柏林,杨屹,王小凤,等.阿尔金北缘大平沟金矿床成因[J]. 矿床地质,2005,24(2):168-175. Chen Bailin, Yang Yi, Wang Xiaofeng, et al. Origin of Dapinggou Gold Deposit in Northern Altun Area, Northwestern China[J]. Mineral Deposits, 2005, 24(2):168-175.
[1] 李文强, 郭巍, 孙守亮, 杨绪海, 刘帅, 侯筱煜. 塔里木盆地巴楚—麦盖提地区古生界油气藏成藏期次[J]. 吉林大学学报(地球科学版), 2018, 48(3): 640-651.
[2] 高飞, 刘永江, 温泉波, 李伟民, 冯志强, 范文亮, 汤超. 内蒙古突泉—科尔沁右翼中旗地区中生代花岗岩锆石U-Pb年龄及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(3): 769-783.
[3] 陈瑞莉, 陈正乐, 伍俊杰, 梁志录, 韩凤彬, 王永, 肖昌浩, 韦良喜, 沈滔. 甘肃合作早子沟金矿床流体包裹体及硫铅同位素特征[J]. 吉林大学学报(地球科学版), 2018, 48(1): 87-104.
[4] 孙凡婷, 刘晨, 邱殿明, 鲁倩, 贺云鹏, 张铭杰. 大兴安岭东坡小奎勒河中基性侵入岩成因及地球动力学意义:锆石U-Pb年代学、元素和Hf同位素地球化学证据[J]. 吉林大学学报(地球科学版), 2018, 48(1): 145-164.
[5] 和成忠, 张德会, 吴鸣谦, 夏岩, 张荣臻, 胡铁军. 辽宁青城子姚家沟斑岩型钼矿流体包裹体[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1717-1731.
[6] 门兰静, 孙景贵, 王好均, 柴鹏, 赵克强, 古阿雷, 刘城先. 延边浅成高硫化热液金矿床的成矿流体起源与演化:以杜荒岭和九三沟矿床为例[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1365-1382.
[7] 陈晶源, 王长明, 贺昕宇, 陈良, 吴彬, 王乔, 张端, 姚恩亚, 董猛猛. 河南瓦房铅锌矿床地质、流体包裹体和稳定同位素特征[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1383-1404.
[8] 刘晨, 孙景贵, 邱殿明, 古阿雷, 韩吉龙, 孙凡婷, 杨梅, 冯洋洋. 大兴安岭北段东坡小莫尔可地区中生代火山岩成因及其地质意义:元素、Hf同位素地球化学与锆石U-Pb同位素定年[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1138-1158.
[9] 张锦让, 温汉捷, 邹志超. 滇西北兰坪盆地金满脉状铜矿床成矿流体特征及其成矿意义[J]. 吉林大学学报(地球科学版), 2017, 47(3): 706-718.
[10] 张艳, 韩润生, 魏平堂, 邱文龙. 云南会泽矿山厂铅锌矿床流体包裹体特征及成矿物理化学条件[J]. 吉林大学学报(地球科学版), 2017, 47(3): 719-733.
[11] 郝立波, 赵昕, 赵玉岩. 辽宁白云金矿床稳定同位素地球化学特征及矿床成因[J]. 吉林大学学报(地球科学版), 2017, 47(2): 442-451.
[12] 杨梅, 孙景贵, 王忠禹, 赵世峰, 刘晨, 冯洋洋, 任泽宁. 大兴安岭西坡甲乌拉铜银铅锌矿床富碱花岗斑岩的成因及其地质意义:锆石U-Pb定年和地球化学特征[J]. 吉林大学学报(地球科学版), 2017, 47(2): 477-496.
[13] 张兴洲, 刘洋, 曾振, 张宏涛, 崔维龙. 大兴安岭北部±130 Ma火山岩的地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 1-13.
[14] 汪岩, 杨晓平, 那福超, 付俊彧, 孙巍, 杨帆, 刘英才, 张广宇, 宋维民, 杨雅军, 钱程, 庞雪娇. 大兴安岭北段塔河地区晚寒武世中基性火山岩的发现及其地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 126-138.
[15] 赵彦德, 齐亚林, 罗安湘, 程党性, 李继宏, 黄锦绣. 应用流体包裹体和自生伊利石测年重构鄂尔多斯盆地侏罗系油藏烃类充注史[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1637-1648.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王朝阳, 孟恩, 李壮, 李艳广, 靳梦琪. 吉东南新太古代晚期片麻岩类的时代、成因及其对早期地壳形成演化的制约[J]. 吉林大学学报(地球科学版), 2018, 48(3): 587 -625 .
[2] 宋明春, 李杰, 李世勇, 丁正江, 谭现锋, 张照录, 王世进. 鲁东晚中生代热隆-伸展构造及其动力学背景[J]. 吉林大学学报(地球科学版), 2018, 48(4): 941 -964 .
[3] 陈爱民. 澳大利亚Bonaparte盆地WA-406-P区块油气成藏条件及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(4): 965 -980 .
[4] 王玉霞, 周立发, 焦尊生, 尚庆华, 黄生旺. 鄂尔多斯盆地陕北地区延长组致密砂岩储层敏感性评价[J]. 吉林大学学报(地球科学版), 2018, 48(4): 981 -990 .
[5] 林敉若, 操应长, 葸克来, 王健, 陈洪, 吴俊军. 阜康凹陷东部斜坡带二叠系储层特征及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(4): 991 -1007 .
[6] 牟敦山, 付广, 陈雪晴. 南堡1号构造馆三段断盖配置油气渗漏部位及其控藏作用[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1008 -1017 .
[7] 赵谦平, 张丽霞, 尹锦涛, 俞雨溪, 姜呈馥, 王晖, 高潮. 含粉砂质层页岩储层孔隙结构和物性特征:以张家滩陆相页岩为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1018 -1029 .
[8] 龚跃华, 杨胜雄, 王宏斌, 梁金强, 梁劲. 琼东南盆地天然气水合物成矿远景[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1030 -1042 .
[9] 日比娅, 孙友宏, 韩婧, 郭明义. 3种无机盐催化热解油页岩[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1043 -1049 .
[10] 贺晓龙, 张达, 陈国华, 狄永军, 霍海龙, 李宁, 张志辉, 饶建锋, 魏锦, 欧阳永棚. 江西朱溪铜钨矿床成因:来自矿物学和年代学的启示[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1050 -1070 .