吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (3): 734-748.doi: 10.13278/j.cnki.jjuese.20200218
张超1, 石绍山2, 时溢2, 魏明辉2, 杨帆2, 郇恒飞2, 李文博2, 王路远1,3
Zhang Chao1, Shi Shaoshan2, Shi Yi2, Wei Minghui2, Yang Fan2, Huan Hengfei2, Li Wenbo2, Wang Luyuan1,3
摘要: 本文对华北板块北缘东段辽宁北部法库地区中三叠世风歧堡岩体和靠陵沟岩体进行了岩相学、锆石U-Pb年代学、地球化学及Lu-Hf同位素研究。LA-ICP-MS锆石U-Pb测年结果显示,风歧堡岩体和靠陵沟岩体加权平均年龄分别为(241±1) Ma和(243±1) Ma,侵位时代为中三叠世。风歧堡岩体的Ba和Sr质量分数分别为(290.00×10-6~484.00×10-6)和(129.00×10-6~338.00×10-6),Sr/Y值为13.27~28.17,Sr/Yb值为117.50~250.28;靠陵沟岩体具有较高的Ba质量分数(899.00×10-6~1 300.00×10-6)和Sr质量分数(772.00×10-6~997.00×10-6),以及较高的Sr/Y值(67.47~78.21)和Sr/Yb值(661.81~781.32),Y、Rb和Yb质量分数较低,分别为11.00×10-6~14.70×10-6、55.80×10-6~78.40×10-6、1.17×10-6~1.39×10-6,地球化学特征上具有高Ba-Sr花岗岩的特征。此外,凤歧堡岩体样品富集大离子亲石元素Rb和K,亏损高场强元素Nb、P、Ti和大离子亲石元素Ba;靠陵沟岩体样品富集大离子亲石元素Ba、K、Sr,亏损高场强元素Nb、P、Ti。凤歧堡和靠陵沟岩体样品Nb/Ta值(4.18~10.26)和Zr/Hf值(30.39~38.76)与地壳平均值相近,Ni、Co和Cr质量分数较低;岩石地球化学特征表明法库地区中三叠世花岗质岩浆源岩为壳源岩石。中三叠世—晚三叠世早期,华北板块北缘东段处于造山地壳加厚阶段。研究区中三叠世花岗岩的εHf(t)值均为正值,亏损地幔二阶段模式年龄(TDM2)为949~555 Ma,结合岩石地球化学特征,中三叠世花岗质岩浆源岩为造山地壳加厚过程中新元古代新生下地壳部分熔融的产物。
中图分类号:
[1] Shi Y, Liu Z H, Liu Y J, et al. Late Paleozoic-Early Mesozoic Southward Subduction-Closure of the Paleo-Asian Ocean: Proof from Geochemistry and Geochronology of Early Permian-Late Triassic Felsic Intrusive Rocks from North Liaoning, NE China[J]. Lithos, 2019, 346/347: 1-24. [2] Shi Y, Shi S S, Liu Z H, et al. Petrogenesis of the Late Early Palaeozoic Adakitic Granitoids in the Southern Margin of the Songliao Basin, NE China: Implications for the Subduction of the Palaeo-Asian Ocean[J]. Geological Journal, 2019, 54: 3821-3839. [3] Shi Y, Yao Y, Liu Z H, et al. Petrogeochemical Characteristics, Zircon SHRIMP U-Pb Ages and Lu-Hf Isotopic Compositions of Late Carboniferous A-Type Granitoids, Yili Area, Inner Mongolia (China)[J]. Geological Journal, 2019, 54(2): 770-790. [4] 时溢.华北板块北缘东段法库地区晚奥陶世—晚三叠世构造演化:来自岩浆活动证据[D]. 长春:吉林大学,2020. Shi Yi. Late Ordovician-Late Triassic Tectonic Evolution of Faku Area in the Eastern Segment of the Northern Margin of the North China Craton:Evidence from Magmatic Activity[D]. Changchun: Jilin University, 2020. [5] 时溢,刘正宏,徐仲元,等. 吉林勇新海西期花岗质岩石的同位素年代学及地球化学[J]. 地质与资源,2013,22(1): 6-13. Shi Yi, Liu Zhenghong, Xu Zhongyuan, et al. Isotopic Chronology and Geochemistry of the Hercynian Yongxin Granitoid in Longjing, Jilin Province[J]. Geology and Resources, 2013, 22(1): 6-13. [6] 张超,郭巍,徐仲元,等. 吉林东部延边地区二长花岗岩年代学、岩石成因学及其构造意义研究[J].岩石学报,2014,30(2): 222-236. Zhang Chao, Guo Wei, Xu Zhongyuan, et al. Study on Geochronology, Petrogenesis and Tectonic Implications of Monzogranite from the Yanbian Area, Eastern Jilin Province[J]. Acta Petrologica Sinica, 2014, 30(2): 222-236. [7] 张超,徐仲元,刘正宏,等.东北延边地区晚中生代柳洞岩体的成因:锆石U-Pb年代学和地球化学证据[J].吉林大学学报(地球科学版),2014,44(1):145-157. Zhang Chao, Xu Zhongyuan, Liu Zhenghong, et al. Petrogenesis of the Late Mesozoic Liudong Pluton in Yanbian Area NE China: Evidence from Zircon U-Pb Geochronology and Geochemistry[J]. Journal of Jilin University(Earth Science Edition), 2014, 44(1):145-157. [8] 张超,刘永江,张照录,等. 延边地区古洞河韧性剪切带变形特征及变形时代[J].地球科学,2019,44(10):3253-3264. Zhang Chao, Liu Yongjiang, Zhang Zhaolu, et al. Deformation and Geochronological Characteristics of Gudonghe Ductile Shear Zone in Yanbian Area[J]. Earth Science, 2019, 44(10): 3253-3264. [9] 张超. 华北板块北缘东段延边地区中生代构造演化[D]. 长春:吉林大学,2014. Zhang Chao. The Mesozoci Tectonic Evolution of Yanbian Area in the Eastern Segment of Northern Margin of the North China Block[D]. Changchun: Jilin University, 2014. [10] Zhang C, Neubauer F, Liu Z H, et al. Final-Stage Magmatic Record of Paleo-Asian Oceanic Subduction? Insights from Late Permian to Early Triassic Intrusive Rocks in the Yanbian Area, Easternmost Central Asian Orogenic Belt[J/OL]. Minerals, 2020, 10(9): 799. https://doi.org/10.3390/min10090799. [11] Windley B F, Alexeiev D, Xiao W J, et al. Tectonic Models for Accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164: 31-47. [12] 张国伟,董云鹏,姚平安. 造山带与造山作用及其研究的新起点[J]. 西北地质,2001,34 (1): 1-9. Zhang Guowei, Dong Yunpeng, Yao Ping’an. Review on the Development of Studies on the Tectonic and Orogen Process of Orogenic Belt, and Discussing on Some New Key Problems[J]. Northwestern Geology, 2001, 34 (1): 1-9. [13] 吴志强,任云生,索良明,等. 松嫩地块东缘金山屯地区晚三叠世双峰式侵入岩年代学、地球化学及其对构造演化的制约[J].世界地质,2020,39(4):796-808. Wu Zhiqiang, Ren Yunsheng, Suo Liangming, et al. Geochronology, Geochemistry and Its Constraint on Tectonic Evolution of Late Triassic Bimodal Intrusive Rocks in Jinshantun Area of Eastern Songnen Massif[J]. Global Geology, 2020,39(4):796-808. [14] 肖文交,李继亮,宋东方,等. 增生型造山带结构解析与时空制约[J]. 地球科学,2019,44 (5): 1661-1687. Xiao Wenjiao, Li Jiliang, Song Dongfang, et al. Structural Analyses and Spatio-Temporal Constraints of Accretionary Orogens[J]. Earth Science, 2019, 44 (5): 1661-1687. [15] Li J Y. Permian Geodynamic Setting of Northeast China and Adjacent Regions: Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26: 207-224. [16] 刘建峰. 内蒙古林西—东乌旗地区晚古生代岩浆作用及其对区域构造演化的制约[D].长春:吉林大学, 2009. Liu Jianfeng. Late Paleozoic Magmatism and Its Constraints on Regional Tectonic Evolution in Linxi-Dongwuqi Area,Inner Mongolia[D]. Changchun: Jilin University, 2009. [17] Jian P, Liu D Y, Kröner A, et al. Time Scale of an Early to Mid-Paleozoic Orogenic Cycle of the Long-Lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for Continental Growth[J]. Lithos, 2008,101: 233-259. [18] 张超,吴新伟,刘永江,等. 大兴安岭中段早二叠世A型花岗岩成因及对贺根山-黑河缝合带构造演化的制约[J]. 岩石学报,2020,36(4):1091-1106. Zhang Chao, Wu Xinwei, Liu Yongjiang, et al. The Early Permian A-Style Granites in Middle Great Xing’an Range, Northeast China: Petrogenesis and Constraints for Tectonic Evolution of Hegenshan-Heihe Suture[J]. Acta Petrologica Sinica, 2020, 36(4): 1091-1106. [19] 邹国庆,余牛奔,孙国庆,等. 东准噶尔奥依托浪格地区石炭纪双峰式火山岩地球化学特征及其构造意义[J].吉林大学学报(地球科学版),2021,51(2):455-472. Zou Guoqing, Yu Niuben, Sun Guoqing, et al. Geochemical Characteristics and Tectonic Significance of Carboniferous Bimodal Volcanic Rocks in Aoyituolangge Area, Eastern Junggar[J]. Journal of Jilin University(Earth Science Edition), 2021,51(2):455-472. [20] 周传芳, 杨华本, 李向文,等. 大兴安岭北段新林地区晚石炭世花岗岩的岩石成因及地质意义[J]. 吉林大学学报(地球科学版),2020,50(1):97-111. Zhou Chuanfang, Yang Huaben, Li Xiangwen, et al. Petrogenesis of Late Carboniferous Granitic Plutons in Xinlin Area, Northern Great Xing’an Range and Their Geological Significance[J]. Journal of Jilin University(Earth Science Edition), 2020,50(1):97-111. [21] 张晓晖,王辉,李铁胜. 辽北法库构造岩系的40Ar/-39Ar年代学研究及地质意义[J]. 中国科学:地球科学, 2004,34 (6): 504-513. Zhang Xiaohui, Wang Hui, Li Tiesheng. The Study and Geological Significance of 40Ar/-39Ar Geochronology of the Faku Tectonics in the Northern Liaoning Province[J]. Science in China: Earth Science, 2004, 34(6):504-513. [22] 张晓晖,宿文姬,王辉. 辽北法库构造岩系的锆石SHRIMP年代学研究与华北地台北缘边界[J]. 岩石学报,2005,21 (1): 135-142. Zhang Xiaohui, Su Wenji, Wang Hui. Zircon SHRIMP Geochronology of the Faku Tectonics in the Northern Liaoning Province: Implications for the Northern Boundary of the North China Craton[J]. Acta Petrologica Sinica, 2005, 21 (1): 135-142. [23] 关庆彬. 华北板块北缘东段开原—延吉地区二叠纪—早侏罗世构造演化[D].长春:吉林大学,2018. Guan Qingbin. Permian-Early Jurassic Tectonic Evolution of Kaiyuan-Yanji Area in the Eastern Segment of the Northern Margin of the North China Block[D]. Changchun: Jilin University, 2018. [24] 关庆彬,李世超,张超,等. 兴蒙造山带南缘东段和龙地区Ⅰ型花岗岩锆石U-Pb定年、地球化学特征及其地质意义[J]. 岩石学报,2016,32 (9): 2690-2706. Guan Qingbin, Li Shichao, Zhang Chao, et al. Zircon U-Pb Dating, Geochemistry and Geological Significance of the I-Type Granites in Helong Area, the Eastern Section of the Southern Margin of Xing-Meng Orogenic Belt[J]. Acta Petrologica Sinica, 2016, 32 (9): 2690-2706. [25] Yang D G, Sun D Y, Gou J, et al. U-Pb Ages of Zircons from Mesozoic Intrusive Rocks in the Yanbian Area, Jilin Province, NE China: Transition of the Paleo-Asian Oceanic Regime to the Circum-Pacific Tectonic Regime[J]. Journal of Asian Earth Science, 2017, 143: 171-190. [26] Wang Z J, Xu W L, Pei F P, et al. Geochronology and Geochemistry of Middle Permian-Middle Triassic Intrusive Rocks from Central-Eastern Jilin Province, NE China: Constraints on the Tectonic Evolution of the Eastern Segment of the Paleo-Asian Ocean[J]. Lithos, 2015, 238: 13-25. [27] Guan Q B, Liu Z H, Liu Y J, et al. A Tectonic Transition from Closure of the Paleo-Asian Ocean to Subduction of the Paleo-Pacific Plate: Insights from Early Mesozoic Igneous Rocks in Eastern Jilin Province, NE China[J/OL]. Gondwana, Research, 2020.doi:10.1016/j.gr.2020.05.001. [28] Ma X H, Zhu W P, Zhou Z H, et al. Transformation from Paleo-Asian Ocean Closure to Paleo-Pacificsubduction: New Constraints from Granitoids in the Eastern Jilin-Heilongjiang Belt, NE China[J]. Journal of Asian Earth Science, 2017, 144: 261-286. [29] Song Z G, Han Z Z, Gao L H, et al. Permo-Triassic Evolution of the Southern Margin of the Central Asian Orogenic Belt Revisited: Insights from Late Permian Igneous Suite in the Daheishan Horst, NE China[J]. Gondwana Research, 2018, 56: 23-50. [30] Ma X H, Chen C J, Zhao J X, et al. Late Permian Intermediate and Felsic Intrusions in the Eastern Central Asian Orogenic Belt: Final-Stage Magmatic Record of Paleo-Asian Oceanic Subduction?[J]. Lithos, 2019, 326: 265-278. [31] Zhang Y B, Wu F Y, Wilde S A, et al. Zircon U-Pb Ages and Tectonic Implications of "Early Paleozoic" Granitoids at Yanbian, Jilin Province, Northeast China[J]. The Island Arc, 2004, 13: 484-505. [32] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic Granitoids in Northeastern China[J]. Journal of Asian Earth Science, 2011, 41: 1-30. [33] Andersen T. Correction of Common Lead in U-Pb Analyses that Do Not Report 204Pb[J]. Chemical Geology, 2002, 192: 59-79. [34] Vermeesch P. IsoplotR: A Free and Open Toolbox for Geochronology[J]. Geoscience Frontiers, 2018, 9: 1479-1493. [35] Wu F Y, Yang Y H, Xie L W, et al. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology[J]. Chemical Geology, 2007, 234: 105-126. [36] Bouvier A, Vervoort J D, Patchett P J. The Lu-Hf and Sm-Nd Isotopic Composition of Chur: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets[J]. Earth & Planetary Science Letters, 2008, 273 (1/2): 48-57. [37] Griffin W L, Pearson N J, Belousova E, et al. The Hf Isotope Composition of Cratonic Mantle: LA-MC-ICP MS Analysis of Zircon Megacrysts in Kimberlites[J]. Geochimicaet Cosmochimica Acta, 2000, 64 (1): 133-147. [38] Griffin W L, Wang X, Jackson S E, et al. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes[J]. Lithos, 2002, 61(3):237-269. [39] Mackenzie W S. The Interpretation of Igneous Rocks[M]. London: Allen and Unwin, 1979. [40] Rickwood P C. Boundary Lines Within Petrologic Diagrams Which Use Oxides of Major and Minor Elements[J]. Lithos, 1989, 22(4):247-263. [41] Boynton W V. Geochemistry of the Rare Earth Elements Meteorite Studies[M]. Amsterdam: Elsevier Science Publishers, 1984. [42] Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[M]. London: Geological Society Special Publications, 1989. [43] Amelin Y, Lee D C, Halliday A N. Early-Middle Archaean Crustal Evolution Deduced from Lu-Hf and U-Pb Isotopic Studies of Single Zircon Grains[J]. Geochimica et Cosmochimica Acta, 2000, 64: 4205-4225. [44] Vervoort J D, Patchett P J, Gehrels G E, et al. Constraints on Early Earth Differentiation from Hafnium and Neodymium Isotopes[J]. Nature, 1996, 379: 624-627. [45] Taylor S R, Mclennan S M. The Continental Crust: Its Composition and Evolution:An Examination of the Geochemical Record Preserved in Sedimentary Rocks[M]. Oxford: Blackwell Scientific Publication, 1985. [46] Defant M J, Drummond M S. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere[J]. Nature, 1990, 347: 662-665. [47] Cao H H,Xu W L,Pei F P,et al. Zircon U-Pb Geochronology and Petrogenesis of the Late Paleozoic Early Mesozoic Intrusive Rocks in the Eastern Segment of the Northern Margin of the North China Block[J]. Lithos, 2013, 170/171: 191-207. [48] 曹花花.华北板块北缘东段晚古生代-早中生代火成岩的年代学与地球化学研究[D].长春:吉林大学, 2013. Cao Huahua. Geochronology and Geochemistry of the Late Paleozoic-Early Mesozoic Igneous Rocks in the Eastern Segment of the Northern Margin of the North China Block[D]. Changchun: Jilin University, 2013. [49] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, 25 (4): 956-983. [50] Martin H. Adakitic Magmas: Modern Analogues of Archaean Granitoids[J]. Lithos, 1999, 46(3): 411-429. [51] 孙德有,吴福元,张艳斌,等. 西拉木伦河-长春-延吉板块缝合带的最后闭合时间:来自吉林大玉山花岗岩体的证据[J]. 吉林大学学报 (地球科学版), 2004, 34 (2): 174-181. Sun Deyou, Wu Fuyuan, Zhang Yanbin, et al. The Final Closing Time of the West Lamulun River-Changchun-Yanji Plate Suture Zone-Evidence from the Dayushan Granitic Pluton, Jilin Province[J]. Journal of Jilin University(Earth Science Edition), 2004, 34 (2): 174-181. [52] 李承东,张福勤,苗来成,等. 吉林色洛河晚二叠世高镁安山岩SHRIMP锆石年代学及其地球化学特征[J]. 岩石学报,2007,23(4): 767-776. Li Chengdong, Zhang Fuqin,Miao Laicheng,et al. Zircon SHRIMP Geochronology and Geochemistry of Late Permian High-Mg Andesites in Seluohe Area, Jilin Province, China[J].Acta Petrologica Sinica, 2007, 23(4):767-776. [53] Yuan L L, Zhang X H, Xue F H, et al. Late Permian High-Mg Andesite and Basalt Association from Northern Liaoning, North China: Insights into the Final Closure of the Paleo-Asian Ocean and the Orogeny-Craton Boundary[J]. Lithos, 2016, 258/259: 58-76. [54] 孙德有, 吴福元, 高山, 等. 吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约[J]. 地学前缘,2005,12 (2): 263-275. Sun Deyou, Wu Fuyuan, Gao Shan, et al. Confirmation of Two Episodes of A-Type Granite Emplacement During Late Triassic and Early Jurassic in the Central Jilin Province, and Their Constraints on the Structural Pattern of Eastern Jilin-Heilongjiang Area, China[J]. Earth Science Frontiers, 2005, 12(2):263-275. |
[1] | 张贵山, 邱红信, 温汉捷, 彭仁, 孟乾坤. 攀西红格钒钛磁铁矿矿田富钴硫化物中钴的地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1740-1752. |
[2] | 宫昀迪, 李碧乐, 李治华, 于润涛, 孙永刚, 张森. 大兴安岭北段小柯勒河花岗斑岩脉成因及地质意义:锆石U-Pb年龄、岩石地球化学及Hf同位素制约[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1753-1769. |
[3] | 张七道, 刘振南, 尹林虎. 深变质岩区地热流体化学特征及成因——以滇西陇川盆地温泉为例[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1838-1852. |
[4] | 李天军, 黄志龙, 王瑞, 苟红光, 张品, 殷越. 银根—额济纳旗盆地天草凹陷下白垩统巴音戈壁组有效烃源岩地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版), 2021, 51(4): 957-972. |
[5] | 史冬岩, 张坤, 张玉鹏, 高勇, 唐伟, 吕明奇. 黑龙江省浅覆盖区地物化特征与找矿标志——以黑河市340高地金矿化区为例[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1042-1053. |
[6] | 赵越, 刘敬党, 张国宾, 张艳飞. 张广才岭南部帽儿山岩体二长花岗岩年代学、地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1098-1118. |
[7] | 杨元江, 邓昌州, 李成禄, 张立, 高永志, 于喜洹. 大兴安岭大洋山钼矿区侵入岩年代学、岩石地球化学特征及岩石成因[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1064-1081. |
[8] | 孙超, 苟军, 孙德有, 冯钊, 田丽. 黑龙江省西北部晚古生代I-A型花岗岩的成因及构造意义[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1082-1097. |
[9] | 张雪, 翁凯, 赵晓健, 杜守礼, 尚颖. 新疆东天山卡拉塔格二叠纪火山岩成因及构造意义[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1119-1138. |
[10] | 史冀忠, 牛亚卓, 许伟, 宋博, 王宝文. 银额盆地石板泉西石炭系白山组碳酸盐岩地球化学特征及其环境意义[J]. 吉林大学学报(地球科学版), 2021, 51(3): 680-693. |
[11] | 曾志杰, 陈雷. 南秦岭山阳—柞水矿集区夏家店金矿床微量-铂族元素地球化学特征及其对矿床成因的指示[J]. 吉林大学学报(地球科学版), 2021, 51(3): 704-722. |
[12] | 田梦宇, 狄永军, 王帅, 贾一龙. 广西云开地区那蓬岩体黑云母二长花岗岩年代学、地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2021, 51(3): 749-766. |
[13] | 邓红宾, 李培龙, 魏华财, 何文劲, 杨鹏涛, 李宁, 唐华. 东昆仑造山带低山头花岗岩体岩石地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(3): 767-782. |
[14] | 康鹏宇, 刘传朋, 梁成, 冯爱平, 刘同, 宗传攀. 沂蒙山区土壤质量地球化学评价方法[J]. 吉林大学学报(地球科学版), 2021, 51(3): 877-886. |
[15] | 谭晓淼, 高锐, 王海燕, 侯贺晟, 李洪强, 匡朝阳. 中亚造山带东段深地震反射剖面大炮揭露下地壳与Moho结构——数据处理与初步解释[J]. 吉林大学学报(地球科学版), 2021, 51(3): 898-908. |
|