吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1514-1522.doi: 10.13278/j.cnki.jjuese.20200276

• 绿色岩土工程 • 上一篇    下一篇

免共振沉桩过程对地表振动影响的FLAC3D数值模拟

魏家斌1, 王卫东1,2, 吴江斌2   

  1. 1. 同济大学土木工程学院地下建筑与工程系, 上海 200092;
    2. 华东建筑设计研究院有限公司上海地下空间与工程设计研究院, 上海 200011
  • 收稿日期:2020-11-26 出版日期:2021-09-26 发布日期:2021-09-29
  • 作者简介:魏家斌(1992-),男,博士研究生,主要从事免共振沉桩环境影响和承载特性研究,E-mail:jiabin_wei@foxmail.com
  • 基金资助:
    国家自然科学基金项目(51978399);上海市科委重点研发项目(18DZ1205300);上海市青年科技启明星计划(18QB1400300);上海市优秀学术/技术带头人计划(18XD1422600)

Numerical Simulation with FLAC3D on Ground Surface Vibration During Pile Driving Using Resonance-Free Technology

Wei Jiabin1, Wang Weidong1,2, Wu Jiangbin2   

  1. 1. Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China;
    2. Shanghai Underground Space Engineering Design & Research Institute, East China Architecture Design & Research Institute Co., Ltd., Shanghai 200011, China
  • Received:2020-11-26 Online:2021-09-26 Published:2021-09-29
  • Supported by:
    Supported by the National Natural Science Foundation of China (51978399), the Key R&D Projects of Shanghai Science and Technology Commission (18DZ1205300), the Shanghai Rising-Star Program (18QB1400300) and the Program of Shanghai Academic/Technology Research Leader (18XD1422600)

摘要: 为研究免共振沉桩过程对地表振动影响,采用密度放大法以消除模型桩弹性模量过大对计算效率的影响,在有限差分软件FLAC3D中建立了相应的连续振动沉桩模型,并和文献中的现场测试结果进行了比较,分析了激振力幅值和振动频率这两个施工参数对地表振动响应的影响。结果表明:密度放大法可有效提高数值模拟的计算效率,模拟沉桩7.0倍桩径(4.9 m)所需计算时间约为12.0 h,数值结果较好地模拟了现场测试中免共振沉桩的地表振动影响;激振力幅值和振动频率均主要对近场(水平距离为5.0倍桩径范围内)的地表振动有明显影响;临界沉桩深度与地表振动影响峰值相对应,该深度随水平距离先增大后趋于稳定;激振力幅值对临界沉桩深度的改变不明显,振动频率对远场临界沉桩深度则有较明显影响。

关键词: 免共振沉桩, 密度放大法, 数值模拟, FLAC3D, 土体振动测试

Abstract: Aiming to investigate the ground surface vibration during pile driving with resonance-free technology, a continuous vibratory pile driving model was established by using the finite difference program FLAC3D. The density scaling method was introduced to eliminate the effect of time consuming due to the excessive elastic modulus of the model pile. The numerical results were compared to the field test data in literature, and then the influence of exciting force amplitude and vibrating frequency on ground surface vibration, was investigated. The results show that:The density scaling method can effectively increase the simulation efficiency, in which the calculation time for penetrating simulated 7.0 times pile diameter (4.9 m) is around 12.0 h, and there is an acceptable agreement between the numerical result and the field measurement; Additionally, the ground surface vibrations are influenced by the exciting force amplitude and the vibrating frequency mainly in the near field (horizontal distance less than 5.0 times pile diameter); Corresponding to the peak ground surface vibration, the critical penetration depth increases first with the horizontal distance and then tends to almost a steady value; Compared to the exciting force amplitude, the vibrating frequency can influence the critical penetration depth in the far field.

Key words: resonance-free vibratory pile driving, density scaling method, numerical simulation, FLAC3D, ground vibration tests

中图分类号: 

  • TU67
[1] Rajapakse R. Pile Design and Construction Rules of Thumb[M]. 2nd ed. Amsterdam:Elsevier, 2016:286-290.
[2] 杨春柳. 钢管桩免共振施工对邻近地铁的振动影响试验研究[J]. 建筑施工, 2018, 40(9):1655-1657. Yang Chunliu. Experimental Study on Vibration Effect of Steel Pipe Piles Resonance-Free Construction on Adjacent Metro[J]. Building Construction, 2018, 40(9):1655-1657.
[3] 李操, 张孟喜, 周蓉峰, 等. 免共振沉桩原位试验研究[J]. 长江科学院院报, 2020, 37(9):122-127. Li Cao, Zhang Mengxi, Zhou Rongfeng, et al. In-Situ Test Study on Resonance-Free Pile[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(9):122-127.
[4] 王卫东, 魏家斌, 吴江斌, 等. 高频免共振法沉桩对周围土体影响的现场测试与分析[J]. 建筑结构学报, 2021, 42(4):131-138. Wang Weidong, Wei Jiabin, Wu Jiangbin, et al. Field Test and Analysis on Surrounding Soil Effects of Pile Driving with High-Frequency and Resonance-Free Technology[J]. Journal of Building Structures, 2021, 42(4):131-138.
[5] 王进怀. 2.7高频液压振动沉拔桩锤[C]//中国土木工程学会土力学及基础工程学术委员会联合年会. 北京:中国土木工程学会, 1998:166-172. Wang Jinhuai. 2.7 High Frequency Hydraulic Vibration Sinking and Pulling Pile Hammer[C]//Joint Annual Meeting of the Soil Mechanics and Basic Engineering Academic Committee of China Civil Engineering Society. Beijing:China Civil Engineering Society, 1998:166-172.
[6] Henke S, Grabe J. Numerical Investigation of Soil Plugging Inside Open-Ended Piles with Respect to the Installation Method[J]. Acta Geotechnica, 2008, 3(3):215-223.
[7] Ekanayake S D, Liyanapathirana D S, Leo C J. Influence Zone Around a Closed-Ended Pile During Vibratory Driving[J]. Soil Dynamics and Earthquake Engineering, 2013, 53:26-36.
[8] 肖勇杰, 陈福全, 林良庆. 灌注桩套管振动贯入引起的地面振动及隔振研究[J]. 岩土力学, 2017, 38(3):705-713. Xiao Yongjie, Chen Fuquan, Lin Liangqing. Study of Ground Vibration and Vibration Isolation Due to Sleeve of Cast-in-Place Piles Installed by Vibratory Driving[J]. Rock and Soil Mechanics, 2017, 38(3):705-713.
[9] Chen F Q, Lin Y Q, Dong Y Z, et al. Numerical Investigations of Soil Plugging Effect Inside Large-Diameter, Open-Ended Wind Turbine Monopiles Driven by Vibratory Hammers[J]. Marine Georesources and Geotechnology, 2020, 38(1):83-96.
[10] Daryaei R, Bakroon M, Aubram D, et al. Numerical Evaluation of the Soil Behavior During Pipe-Pile Installation Using Impact and Vibratory Driving in Sand[J]. Soil Dynamics and Earthquake Engineering, 2020, 134:1-15.
[11] Galavi V, Beuth L, Coelho Z, et al. Numerical Simulation of Pile Installation in Saturated Sand Using Material Point Method[J]. Procedia Engineering, 2017, 175:72-79.
[12] 韩钧, 陈福全, 曹琪君. 高频液压振动沉桩的颗粒离散元分析[J]. 福州大学学报(自然科学版), 2011, 39(2):287-292. Han Jun, Chen Fuquan, Cao Qijun. DEM Study on the Installation of a Pile Using the High Frequency Hydraulic Vibratory Hammer[J]. Journal of Fuzhou University (Natural Science Edition), 2011, 39(2):287-292.
[13] Feng Z, Deschamps R J. A Study of the Factors Influencing the Penetration and Capacity of Vibratory Driven Piles[J]. Soils and Foundations, 2000, 40(3):43-54.
[14] 陈福全, 雷金山, 汪金卫. 高频液压振动锤沉桩的打入性状分析[J]. 铁道科学与工程学报, 2009, 6(1):41-47. Chen Fuquan, Lei Jinshan, Wang Jinwei. Penetration Behaviour Due to Vibratory Pile Driving Using the High Frequency Hydraulic Vibratory Hammer[J]. Journal of Railway Science and Engineering, 2009, 6(1):41-47.
[15] Rooz A F H, Hamidi A. A Numerical Model for Continuous Impact Pile Driving Using ALE Adaptive Mesh Method[J]. Soil Dynamic and Earthquake Engineering, 2019, 118:134-143.
[16] Itasca Consulting Group Inc. FLAC3D-Fast Lagrangian Analysis of Continua in Three-Dimensions, Ver. 6.0, User's Guide Manual[Z]. Minneapolis, 2019.
[17] Kuhlemeyer R L, Lysmer J. Finite Element Method Accuracy for Wave Propagation Problems[J]. Journal of the Soil Mechanics and Foundations Division, 1973, 99(5):421-427.
[18] 陈育民, 徐鼎平. FLAC/FLAC3D基础与工程实例[M]. 2版. 北京:中国水利水电出版社, 2013:225-234. Chen Yumin, Xu Dingping. FLAC/FLAC3D Foundation and Engineering Examples[M]. 2nd ed. Beijing:China Water and Power Press, 2013:225-234.
[19] Athanasopolous G A, Pelekis P C. Ground Vibrations from Sheetpile Driving Urban Environment:Measurements, Analysis and Effects on Buildings and Occupants[J]. Soil Dynamic and Earthquake Engineering, 2000, 19:371-387.
[20] 建筑工程容许振动标准:GB 50868-2013[S]. 北京:中国计划出版社, 2013. Standard for Allowable Vibration of Building Engineering:GB 50868-2013[S]. Beijing:China Planning Press, 2013.
[21] Thandavamoorthy T. Piling in Fine and Medium Sand:A Case Study of Ground and Pile Vibration[J]. Soil Dynamic and Earthquake Engineering, 2004, 24(4):295-304.
[22] Khoubani A, Ahmadi M M. Numerical Study of Ground Vibration Due to Impact Pile Driving[J]. Geotechnical Engineering, 2012, 167(1):28-29.
[23] Dassault Systemes Simulia. ABAQUS 2016 Analysis User's Manual, Ver.6.16[Z]. Providence, 2016.
[1] 师文豪, 杨天鸿. 渗流应力耦合作用下顺倾向层状边坡各向异性渗流特征数值模拟[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1783-1788.
[2] 余莉, 张钰, 王维玉, 韩子豪, 赵拓. 基坑装配式可回收支护和桩锚支护结构的受力与变形分析[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1789-1800.
[3] 徐文刚, 余旭荣, 年廷凯, 曹琦, 曹爱武, 裴振伟. 基于FLAC3D的三维边坡稳定性强度折减法计算效率改进算法及其应用[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1347-1355.
[4] 蔡晓光, 徐洪路, 李思汉, 张少秋. 地震作用下返包式加筋土挡墙数值模拟[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1416-1426.
[5] 李立云, 王子英, 王晓静, 杜修力. 近铁路基坑通风井段变形特征及其机制分析[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1441-1451.
[6] 李一赫, 王殿举, 于法浩, 刘志强. 下刚果盆地白垩系盐构造的形成演化[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1628-1638.
[7] 吕雅馨, 骆祖江, 徐成华. 南京汤山地区地热水资源评价[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1844-1853.
[8] 盛冲, 许鹤华, 张云帆, 张文涛, 任自强. 钙质砂水理性质及对岛礁淡水透镜体形成的影响[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1127-1138.
[9] 段云星, 杨浩. 增强型地热系统采热性能影响因素分析[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1161-1172.
[10] 孙超, 许成杰. 基坑开挖对周边环境的影响[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1698-1705.
[11] 王常明, 李桐, 田书文, 李硕. 基于LAHARZ的泥石流堆积范围预测模型的建立及应用[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1672-1679.
[12] 孙可明, 张宇. 缝网间距对高温岩体储留层温度影响规律模拟[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1723-1731.
[13] 常晓军, 葛伟亚, 于洋, 赵宇, 叶龙珍, 张泰丽, 魏振磊. 福建省永泰县东门旗山滑坡诱发机理与防治措施[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1063-1072.
[14] 杨新乐, 秘旭晴, 张永利, 李惟慷, 戴文智, 王亚鹏, 苏畅. 注热联合井群开采煤层气运移采出规律数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1100-1108.
[15] 尹崧宇, 赵大军. 超声波振动下不同应力条件对岩石强度影响的试验[J]. 吉林大学学报(地球科学版), 2019, 49(3): 755-761.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[2] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[3] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[4] 景建恩,魏文博,梅忠武. 塔河油田奥陶系岩溶洞穴发育特征及其与油气的关系[J]. J4, 2005, 35(05): 622 -625 .
[5] 李昭阳,汤 洁,孙平安,林年丰. 松嫩平原西南部土地利用动态变化的分形研究[J]. J4, 2006, 36(02): 250 -0258 .
[6] 柳雁玲,佴 磊,刘永平. 和龙沿江公路傍山隧道偏压特征分析[J]. J4, 2006, 36(02): 240 -0244 .
[7] 崔 健,林年丰,汤 洁,姜玲玲,蔡 宇. 霍林河流域下游地区土地利用变化动态及趋势预测[J]. J4, 2006, 36(02): 259 -0264 .
[8] 张凤君,李 卿,马玖彤,于广菊. 膜蒸馏处理糠醛废水的实验研究[J]. J4, 2006, 36(02): 270 -0273 .
[9] 张凤旭,孟令顺,张凤琴,杨 恕,赵承民. 重力位余弦变换谱基本特征[J]. J4, 2006, 36(02): 274 -0278 .
[10] 邢学文,胡光道. 模糊逻辑法在秦岭-松潘成矿区金矿潜力预测中的应用[J]. J4, 2006, 36(02): 298 -0304 .