吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (9): 2646-2657.doi: 10.13229/j.cnki.jdxbgxb.20221472
• 计算机科学与技术 • 上一篇
摘要:
针对传统遥感影像目标检测的深度学习网络需要人工设计、过度依赖专家经验、费力耗时等问题,提出了一种基于神经网络架构搜索的遥感影像目标检测方法,通过逐路径采样和进化搜索策略自动构建高效的目标检测网络,完成遥感影像目标检测任务。在DIOR数据集和RSOD数据集上进行了实验,目标检测平均精度达到67.8%和85.5%,FLOPs为208.47 G和201.67 G,在检测精度和计算效率方面均优于Faster R-CNN、RetinaNet、NAS-FCOS、ResNet Strikes Back、HRNet和GRoIE等现有网络模型。实验结果表明,本方法能自动搜索出高分辨率遥感影像目标检测的网络架构,具有比人工设计的经典网络更优越的性能。
中图分类号:
1 | 周鹏, 杨军. 采用神经网络架构搜索的遥感影像分割方法[J]. 西安电子科技大学学报, 2021, 48(5): 47-57, 77. |
Zhou Peng, Yang Jun. Semantic segmentation of remote sensing images based on neural architecture search[J]. Journal of Xidian University, 2021, 48(5): 47-57, 77. | |
2 | 张晓东, 张力飞, 陈关州, 等. 基于深度学习的遥感影像地物目标检测和轮廓提取一体化模型[J]. 测绘地理信息, 2019, 44(6): 1-5. |
Zhang Xiao-dong, Zhang Li-fei, Chen Guan-zhou, et al. An integrated model of object detection and contour extraction based on deep learning [J]. Journal of Geomatics, 2019, 44(6): 1-5. | |
3 | 田婷婷, 杨军. 基于多尺度特征融合网络的遥感影像目标检测[J]. 激光与光电子学进展, 2022, 59(16): 427-435. |
Tian Ting-ting, Yang Jun. Object detection for remote sensing image using multi-scale feature fusion network[J]. Laser & Optoelectronics Progress, 2022, 59(16): 427-435. | |
4 | Cao Y, Niu X, Dou Y. Region-based convolutional neural networks for object detection in very high-resolution remote sensing images[C]∥IEEE International Conference on Natural Computation, Hawaii, USA, 2016: 548-554. |
5 | Li K, Cheng G, Bu S, et al. Rotation-insensitive and context-augmented object detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2337-2348. |
6 | Zhong Y, Han X, Zhang L. Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 138: 281-294. |
7 | Chen Z, Zhang T, Ouyang C. End-to-end airplane detection using transfer learning in remote sensing images[J]. Remote Sens, 2018, 10: No.139. |
8 | Liu W, Ma L, Chen H. Arbitrary-oriented ship detection framework in optical remote-sensing images [J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(6): 937-41. |
9 | Zoph B, Le Q V. Neural architecture search with reinforcement learning[DB/OL]. [2016-11-05]. |
10 | Zoph B, Vasudevan V, Shlens J, et al. Learning transferable architectures for scalable image recognition[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8697-8710. |
11 | Real E, Aggarwal A, Huang Y, et al. Regularized evolution for image classifier architecture search[C]∥Proceedings of the AAAI Conference on Artificial Intelligence, Hawaii, USA, 2019: 4780-4789. |
12 | Liu H, Simonyan K, Yang Y. DARTS: differentiable architecture search[C]∥International Conference on Learning Representations, Vancouver, Canada, 2018: 6-9. |
13 | Ghiasi G, Lin T Y, Le Q V. NAS-FPN: learning scalable feature pyramid architecture for object detection [C] ∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 7036-7045. |
14 | Wang N, Gao Y, Chen H, et al. NAS-FCOS: fast neural architecture search for object detection [C] ∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 11940-11948. |
15 | Xu A, Yao A, Li A, et al. Auto-FPN: automatic network architecture adaptation for object detection beyond classification[C]∥IEEE/CVF International Conference on Computer Vision, Venice, Italy, 2020: 6648-6657. |
16 | Cao L, Zhang X, Wang Z. Arbitrary-oriented object detection on high-resolution images based on differentiable architecture search [J]. Canadian Journal of Remote Sensing, 2021, 47(5): 719-30. |
17 | Ma N N, Zhang X Y, Zheng H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[J/OL]. [2022-11-12]. |
18 | Xia G S, Bai X, Ding J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3974-3983. |
19 | Li K, Wan G, Cheng G, et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307. |
20 | Long Y, Gong Y, Xiao Z, et al. Accurate object localization in remote sensing images based on convolutional neural networks [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2486-2498. |
21 | Xiao Z, Liu Q, Tang G, et al. Elliptic Fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images[J]. International Journal of Remote Sensing, 2015, 36(2): 618-644. |
22 | Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. |
23 | Rossi L, Karimi A, Prati A. A novel region of interest extraction layer for instance segmentation[C]∥IEEE International Conference on Pattern Recognition, Chengdu, China, 2021: 2203-2209. |
24 | Sun K, Xiao B, Liu D, et al. Deep high-resolution representation learning for human pose estimation[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 5693-5703. |
25 | Wightman R, Touvron H, Jégou H. Resnet strikes back: an improved training procedure in timm [DB/OL].[2021-10-01]. |
26 | Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]∥IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980-2988. |
[1] | 朱圣杰,王宣,徐芳,彭佳琦,王远超. 机载广域遥感图像的尺度归一化目标检测方法[J]. 吉林大学学报(工学版), 2024, 54(8): 2329-2337. |
[2] | 游新冬,郭磊,韩晶,吕学强. 一种工件表面压印字符识别网络[J]. 吉林大学学报(工学版), 2024, 54(7): 2072-2079. |
[3] | 高云龙,任明,吴川,高文. 基于注意力机制改进的无锚框舰船检测模型[J]. 吉林大学学报(工学版), 2024, 54(5): 1407-1416. |
[4] | 陈仁祥,胡超超,胡小林,杨黎霞,张军,何家乐. 基于改进YOLOv5的驾驶员分心驾驶检测[J]. 吉林大学学报(工学版), 2024, 54(4): 959-968. |
[5] | 张云佐,郭威,李文博. 遥感图像密集小目标全方位精准检测算法[J]. 吉林大学学报(工学版), 2024, 54(4): 1105-1113. |
[6] | 王宏志,宋明轩,程超,解东旋. 基于改进YOLOv4-tiny算法的车距预警方法[J]. 吉林大学学报(工学版), 2024, 54(3): 741-748. |
[7] | 李雄飞,宋紫萱,朱芮,张小利. 基于多尺度融合的遥感图像变化检测模型[J]. 吉林大学学报(工学版), 2024, 54(2): 516-523. |
[8] | 王春华,李恩泽,肖敏. 多特征融合和孪生注意力网络的高分辨率遥感图像目标检测[J]. 吉林大学学报(工学版), 2024, 54(1): 240-250. |
[9] | 蔡志丹,方明,李喆,许佳路. 基于高斯曲率和加权图总变分正则化的遥感图像盲去模糊算法[J]. 吉林大学学报(工学版), 2023, 53(9): 2649-2658. |
[10] | 朱俊清,赵学儒,马涛,黄晓明,朱洪洲. 基于卫星遥感的路域地质灾害监测方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1861-1872. |
[11] | 薛珊,张亚亮,吕琼莹,曹国华. 复杂背景下的反无人机系统目标检测算法[J]. 吉林大学学报(工学版), 2023, 53(3): 891-901. |
[12] | 陶博,颜伏伍,尹智帅,武冬梅. 基于高精度地图增强的三维目标检测算法[J]. 吉林大学学报(工学版), 2023, 53(3): 802-809. |
[13] | 成丽波,李新月,李喆,贾小宁. 基于曲波变换与拟合优度检验的遥感图像去噪方法[J]. 吉林大学学报(工学版), 2023, 53(11): 3207-3213. |
[14] | 马为駽,张䶮,马传香,朱飒. 不同光照条件下含噪遥感图像边缘检测算法[J]. 吉林大学学报(工学版), 2023, 53(1): 241-247. |
[15] | 朱冰,李紫薇,李奇. 基于改进SegNet的遥感图像建筑物分割方法[J]. 吉林大学学报(工学版), 2023, 53(1): 248-254. |
|