吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (4): 1105-1113.doi: 10.13229/j.cnki.jdxbgxb.20220715
• 计算机科学与技术 • 上一篇
Yun-zuo ZHANG1,2(),Wei GUO1,Wen-bo LI1
摘要:
针对遥感图像中目标排列密集且方向不相同,导致现有检测算法难以准确定位实例目标的问题,提出了一种遥感图像密集小目标全方位精准检测算法。首先,为提升特征提取能力,在主干网络的残差结构中引入Meta-ACON激活函数,自适应地学习信道特征的重要性;其次,提出一种加强连接特征金字塔网络,重新设计了用于深浅层特征融合的侧向连接部分,并在同层次特征图输入与输出之间添加了跳跃连接,丰富特征语义信息;再次,引入角度预测分支,使用环形平滑标签方法将角度回归问题转化为分类问题,在实现目标框旋转的同时解决了旋转框边界突变的问题;最后,设计针对旋转检测框的后处理方法(Rotate-Soft-NMS),通过抑制检测框的置信度去除相邻的重复旋转检测框。在DOTA数据集上的实验结果表明:该算法的平均精度均值达到76.15%,相比于基准模型YOLOv5m提升了5.22%,与其他先进算法相比取得了最好的检测结果。本文算法对复杂遥感场景的目标具有更优的检测效果。
中图分类号:
1 | 曲优, 李文辉. 基于锚框变换的单阶段旋转目标检测方法[J]. 吉林大学学报: 工学版, 2022, 52(1): 162-173. |
Qu You, Li Wen-hui. Single-stage rotated object detection network based on anchor transformation[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 162-173. | |
2 | 韩金辉, 魏艳涛, 彭真明, 等. 红外弱小目标检测方法综述[J]. 红外与激光工程, 2022, 51(4): 438-461. |
Han Jin-hui, Wei Yan-tao, Peng Zhen-ming, et al. Infrared dim and small target detection: a review[J]. Infrared and Laser Engineering, 2022, 51(4): 438-461. | |
3 | Li K, Wan G, Cheng G, et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307. |
4 | 董超, 刘晶红, 徐芳, 等. 光学遥感图像舰船目标快速检测方法[J]. 吉林大学学报: 工学版, 2019, 49(4): 1369-1376. |
Dong Chao, Liu Jing-hong, Xu Fang, et al. Fast ship detection in optical remote sensing images[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1369-1376. | |
5 | Nabati R, Qi H R. RRPN: radar region proposal network for object detection in autonomous vehicles[C]∥IEEE International Conference on Image Processing, Piscataway, USA, 2019: 3093-3097. |
6 | Liu Z K, Hu J G, Weng L B, et al. Rotated region based cnn for ship detection[C]∥IEEE International Conference on Image Processing, Piscataway, USA, 2017: 900-904. |
7 | Ding J, Xue N, Long Y, et al. Learning roi transformer for oriented object detection in aerial images[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Piscataway, USA, 2019: 2849-2858. |
8 | Long H, Chung Y, Liu Z B, et al. Object detection in aerial images using feature fusion deep networks[J]. IEEE Access, 2019, 7: 30980-30990. |
9 | Wang Y S, Zhang Y, Zhang Y, et al. SARD: Towards scale-aware rotated object detection in aerial imagery[J]. IEEE Access, 2019, 7: 173855-173865. |
10 | Yang X, Yang J R, Yan J C, et al. SCRDet: Towards more robust detection for small, cluttered and rotated objects[C]∥IEEE/CVF International Conference on Computer Vision, Piscataway, USA, 2019: 8232-8241. |
11 | Zhu Y X, Du J, Wu X Q. Adaptive period embedding for representing oriented objects in aerial images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(10): 7247-7257. |
12 | Chen L C, Liu C S, Chang F L, et al. Adaptive multi-level feature fusion and attention-based network for arbitrary-oriented object detection in remote sensing imagery[J]. Neurocomputing, 2021,451:67-80. |
13 | Qian W, Yang X, Peng S L, et al. Learning modulated loss for rotated object detection[C]∥The 35th AAAI Conference on Artificial Intelligence, Palo Alto,USA, 2021: 2458-2466. |
14 | Ma N N, Zhang X Y, Liu M, et al. Activate or not: Learning customized activation[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA, 2021: 8032-8042. |
15 | Bodla N, Singh B, Chellappa R, et al. Soft-NMS --improving object detection with one line of code[C]∥IEEE International Conference on Computer Vision, Piscataway, USA, 2017: 5561-5569. |
16 | Xia G S, Bai X, Ding J, et al. DOTA: A large-scale dataset for object detection in aerial images[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Piscataway, USA, 2018: 3974-3983. |
17 | Yang X, Yan J C, Feng T H. R3Det: Refined single-stage detector with feature refinement for rotating object[C]∥The 35th AAAI Conference on Artificial Intelligence. Palo Alto,USA, 2021: 3163-3171. |
18 | Ming Q, Miao L J, Zhou Z Q, et al. CFC-Net: A critical feature capturing network for arbitrary-oriented object detection in remote-sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: No.3095186. |
19 | Cheng G, Yao Y Q, Li S Y, et al. Dual-Aligned oriented detector[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: No.3149780. |
20 | 朱煜, 方观寿, 郑兵兵, 等. 基于旋转框精细定位的遥感目标检测方法研究[J]. 自动化学报, 2023, 49(2): 415-424. |
Zhu Yu, Fang Guan-shou, Zheng Bing-bing, et al. Research on detection method of refined rotated boxes in remote sensing[J]. Journal of Automatica Sinica, 2023, 49(2): 415-424. |
[1] | 梁礼明,周珑颂,尹江,盛校棋. 融合多尺度Transformer的皮肤病变分割算法[J]. 吉林大学学报(工学版), 2024, 54(4): 1086-1098. |
[2] | 霍光,林大为,刘元宁,朱晓冬,袁梦,盖迪. 基于多尺度特征和注意力机制的轻量级虹膜分割模型[J]. 吉林大学学报(工学版), 2023, 53(9): 2591-2600. |
[3] | 何颖,王卓然,周旭,刘衍珩. 融合社交地理信息加权矩阵分解的兴趣点推荐算法[J]. 吉林大学学报(工学版), 2023, 53(9): 2632-2639. |
[4] | 张云佐,董旭,蔡昭权. 拟合下肢几何特征的多视角步态周期检测[J]. 吉林大学学报(工学版), 2023, 53(9): 2611-2619. |
[5] | 肖明尧,李雄飞,朱芮. 基于NSST域像素相关分析的医学图像融合[J]. 吉林大学学报(工学版), 2023, 53(9): 2640-2648. |
[6] | 赵亚慧,李飞雨,崔荣一,金国哲,张振国,李德,金小峰. 基于跨语言预训练模型的朝汉翻译质量评估[J]. 吉林大学学报(工学版), 2023, 53(8): 2371-2379. |
[7] | 车翔玖,徐欢,潘明阳,刘全乐. 生物医学命名实体识别的两阶段学习算法[J]. 吉林大学学报(工学版), 2023, 53(8): 2380-2387. |
[8] | 王连明,吴鑫. 基于姿态估计的物体3D运动参数测量方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2099-2108. |
[9] | 张则强,梁巍,谢梦柯,郑红斌. 混流双边拆卸线平衡问题的精英差分进化算法[J]. 吉林大学学报(工学版), 2023, 53(5): 1297-1304. |
[10] | 张振海,季坤,党建武. 基于桥梁裂缝识别模型的桥梁裂缝病害识别方法[J]. 吉林大学学报(工学版), 2023, 53(5): 1418-1426. |
[11] | 刘培勇,董洁,谢罗峰,朱杨洋,殷国富. 基于多支路卷积神经网络的磁瓦表面缺陷检测算法[J]. 吉林大学学报(工学版), 2023, 53(5): 1449-1457. |
[12] | 姜宇,潘家铮,陈何淮,符凌智,齐红. 基于分割方法的繁体中文报纸文本检测[J]. 吉林大学学报(工学版), 2023, 53(4): 1146-1154. |
[13] | 于鹏,朴燕. 基于多尺度特征的行人重识别属性提取新方法[J]. 吉林大学学报(工学版), 2023, 53(4): 1155-1162. |
[14] | 潘弘洋,刘昭,杨波,孙庚,刘衍珩. 基于新一代通信技术的无人机系统群体智能方法综述[J]. 吉林大学学报(工学版), 2023, 53(3): 629-642. |
[15] | 何颖,樊俊松,王巍,孙庚,刘衍珩. 无人机空地安全通信与航迹规划的多目标联合优化方法[J]. 吉林大学学报(工学版), 2023, 53(3): 913-922. |
|