吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (10): 2792-2798.doi: 10.13229/j.cnki.jdxbgxb.20221562

• 材料科学与工程 • 上一篇    

Gd对挤压镁合金AZ91组织和氢脆的影响

宋雨来1,2(),李伟光1,2,张林阳3,宋庆军3,张华3,李军3,刘庆1,2   

  1. 1.吉林大学 汽车材料教育部重点实验室,长春 130022
    2.吉林大学 材料科学与工程学院,长春 130022
    3.中国一汽研发总院 材料与轻量化开发院金属材料开发部,长春 130011
  • 收稿日期:2022-11-10 出版日期:2024-10-01 发布日期:2024-11-22
  • 作者简介:宋雨来(1974-),男,教授,博士.研究方向:金属的腐蚀与防护. E-mail: ylsong@jlu.edu.cn
  • 基金资助:
    吉林省重大科技项目(20210301025GX)

Effect of Gd on microstructure and hydrogen embrittlement of AZ91‐extruded magnesium alloy

Yu-lai SONG1,2(),Wei-guang LI1,2,Lin-yang ZHANG3,Qing-jun SONG3,Hua ZHANG3,Jun LI3,Qing LIU1,2   

  1. 1.Key Laboratory of Automobile Materials,Ministry of Education,Jilin University,Changchun 130022,China
    2.College of Materials Science and Engineering,Jilin University,Changchun 130022,China
    3.Metal Materials Department of Materials & lightweight Institute,General R&D Institute,China FAW Co. ,Ltd. ,Changchun 130011,China
  • Received:2022-11-10 Online:2024-10-01 Published:2024-11-22

摘要:

采用挤压法制备了AZ91和AZ91-xGd(x=0.5、1.0、1.5)镁合金。采用扫描电镜、电化学氧化法、慢应变速率拉伸法,研究了挤压镁合金AZ91和AZ91-xGd的微观组织、充氢及氢脆行为。结果表明:随着Gd的加入,AZ91中的β-Mg17Al12尺寸减小,数量减少,分布均匀。在相同的充氢条件下,随着稀土Gd含量的增加,挤压镁合金AZ91中的氢浓度逐渐降低,在一定程度上解决了氢在合金中的偏聚问题,使氢脆敏感性大大降低,有效提升了抗氢脆性能。

关键词: 材料加工工程, 镁合金, 钆, 氢脆

Abstract:

AZ91 and Az91-xGd(x=0.5,1.0,1.5)magnesium alloys were prepared by extrusion method. The microstructures, hydrogen charging and hydrogen embrittlement behavior of AZ91 and Az91-xGd alloys were studied by scanning electron microscopy, electrochemical oxidation and slow strain rate tensile methods. The results show that with the addition of Gd, the size and quantity of β-Mg17Al12 in AZ91 decrease, and the distribution is uniform. Under the same hydrogen-charged conditions, with the increase of rare earth Gd content, the hydrogen concentration in extruded magnesium alloy AZ91 gradually decreases, which solves the problem of partial polymerization of hydrogen in the alloy to a certain extent, greatly reduces the hydrogen embrittlement susceptibility, and effectively improves the hydrogen embrittlement resistance.

Key words: materials processing engineering, magnesium alloy, Gd, hydrogen embrittlement

中图分类号: 

  • TG146.22

表1

AZ91与Gd改性挤压AZ91成分(质量分数)"

合 金AlZnMnGdFeMg
AZ918.570.620.28-0.0009Bal.
AZ91-0.5Gd8.550.610.260.480.0006Bal.
AZ91-1.0Gd8.560.590.241.020.0003Bal.
AZ91-1.5Gd8.540.600.241.510.0003Bal.

图1

应力腐蚀开裂拉伸试样尺寸"

图2

挤压镁合金AZ91和AZ91-xGd的XRD图谱"

图3

挤压镁合金的SEM显微照片"

图4

挤压镁合金AZ91和AZ91-xGd在同一充氢电流密度下的氢溢出电流密度随时间的变化"

表2

挤压镁合金AZ91和AZ91-xGd的氢浓度"

合金充氢电流密度/ (mA·cm-2氢浓度/ (10-6mol·cm-3
AZ9100.04
703.86
AZ91-0.5Gd00.04
700.78
AZ91-1.0Gd00.03
700.54
AZ91-1.5Gd00.03
700.41

图5

挤压镁合金AZ91和AZ91-xGd在同一充氢电流密度下的力学性能"

图6

挤压镁合金AZ91和AZ91-xGd在同一充氢电流密度下的氢脆敏感性"

图7

挤压镁合金AZ91和AZ91-1.0Gd在70 mA/cm2充氢电流密度下的断口形貌"

图8

挤压镁合金AZ91和AZ91-1.0Gd在充氢电流密度70 mA/cm2下的侧表面形貌"

1 Yang Y, Xiong X M, Chen J, et al. Research advances in magnesium and magnesium alloys worldwide in 2020[J]. Journal of Magnesium and Alloys, 2021, 9(3): 705-747.
2 Atrens A, Song G L, Liu M, et al. Review of recent developments in the field of magnesium corrosion[J]. Advanced Engineering Materials, 2015, 17(4): 400-453.
3 Xu S W, Kamado S, Honma T. Effect of homogenization on microstructures and mechanical properties of hot compressed Mg-9Al-1Zn alloy[J]. Materials Science and Engineering: A, 2011, 528(6): 2385-2393.
4 Satya Prasad S V, Prasad S B, Verma K, et al. The role and significance of magnesium in modern day research—a review[J].Journal of Magnesium and Alloys, 2022, 10(1): 1-61.
5 Luo K, Zhang L, Wu G H, et al. Effect of Y and Gd content on the microstructure and mechanical properties of Mg-Y-RE alloys[J]. Journal of Magnesium and Alloys, 2019, 7(2): 345-354.
6 Yan M, Weng Y. Study on hydrogen absorption of pipeline steel under cathodic charging[J]. Corrosion Science, 2006, 48(2): 432-444.
7 Carter T J, Cornish L A. Hydrogen in metals[J]. Engineering Failure Analysis, 2001, 8(2): 113-121.
8 Chen J, Wang J, Han E, et al. Effect of hydrogen on stress corrosion cracking of magnesium alloy in 0.1M Na2SO4 solution[J]. Materials Science and Engineering: A, 2008, 488(1-2): 428-434.
9 Merson E, Poluyanov V, Myagkikh P, et al. Fractographic features of technically pure magnesium, AZ31 and ZK60 alloys subjected to stress corrosion cracking[J]. Materials Science & Engineering A, 2020, 772(13):No.138744.
10 Winzer N, Cross C E. On the role of β particles in stress corrosion cracking of Mg-Al alloys[J]. Metallurgical and Materials Transactions A, 2008, 40(2): 273-274.
11 Chen J, Wang J Q, Han E H, et al. Effect of hydrogen on corrosion and stress corrosion cracking of AZ91 alloy in aqueous solutions[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(1): 1-7.
12 Winzer N, Atrens A, Dietzel W, et al. Characterisation of stress corrosion cracking (SCC) of Mg–Al alloys[J]. Materials Science and Engineering A, 2008, 488(1-2): 339-351.
13 Winzer N, Atrens A, Dietzel W, et al. Fractography of stress corrosion cracking of Mg-Al alloys[J]. Metallurgical and Materials Transactions A, 2008, 39(5): 1157-1173.
14 Kamilyan M, Silverstein R, Eliezer D. Hydrogen trapping and hydrogen embrittlement of Mg alloys[J]. Journal of Materials Science, 2017, 52(18): 11091-11100.
15 Xi G, Zhao X, Ma Y, et al. Comparative study on corrosion behavior and mechanism of As-Cast Mg-Zn-Y and Mg-Zn-Gd alloys[J]. Acta Metallurgica Sinica(English Letters), 2022,35(1): 1-13.
16 Wu G, Wang C, Sun M, et al. Recent developments and applications on high-performance cast magnesium rare-earth alloys[J]. Journal of Magnesium and Alloys, 2021, 9(1): 1-20.
17 Zhao T L, Liu Z Y,   Hu S S, et al. Effect of hydrogen charging on the stress corrosion behavior of 2205 duplex stainless steel under 3.5wt.% NaCl thin electrolyte layer[J]. Journal of Materials Engineering and Performance, 2017, 26(6): 2837-2846.
18 Mościcki A, Chmiela B, Sozańska M. Corrosion of WE43 and AE44 magnesium alloys in sodium sulfate solution[J]. Solid State Phenomena, 2015, 3763(227): 91-94.
[1] 娄淑梅,李一明,李鑫,陈鹏,白雪峰,程宝嘉. 基于BP神经网络和Arrhenius本构模型的石墨烯/7075复合材料热变形行为[J]. 吉林大学学报(工学版), 2024, 54(5): 1237-1245.
[2] 朱先勇,谢良稳,樊跃香,姜城,孙炜佳,王鹏,肖雄. 搅拌摩擦加工参数对镁合金表面改性层的影响[J]. 吉林大学学报(工学版), 2023, 53(8): 2263-2271.
[3] 梁策,黄富雷,梁继才,李义. 日字形防护梁绕弯成形形变数值模拟[J]. 吉林大学学报(工学版), 2023, 53(12): 3397-3403.
[4] 梁言,王强,宋雨来,刘耀辉. 新型5Cr5MoV模具钢修复性能[J]. 吉林大学学报(工学版), 2022, 52(6): 1301-1307.
[5] 兰凤崇, 李忠超, 周云郊, 陈吉清. 铝镁合金单搭接胶接接头应力分布及强度预测[J]. 吉林大学学报(工学版), 2015, 45(3): 726-732.
[6] 阮德文, 苏达格, 梁雅琴, 伊兰哲田, 连建设. 表面活性剂对镁合金基体上的非铬化镀镍涂层的腐蚀特性的作用[J]. 吉林大学学报(工学版), 2013, 43(02): 363-367.
[7] 宋雨来, 刘耀辉, 朱先勇, 王文琴. Ho对AZ91镁合金腐蚀行为的影响[J]. 吉林大学学报(工学版), 2011, 41(02): 366-0370.
[8] 张文雪,周振君,何成,李钢. 镁合金无铬前处理工艺及化学镀镍[J]. 吉林大学学报(工学版), 2011, 41(01): 78-0083.
[9] 杨悦, 庄宇, 由晓军. AZ91D镁合金表面激光熔覆Al-Ti-C涂层的显微组织和性能[J]. 吉林大学学报(工学版), 2010, 40(06): 1567-1571.
[10] 张文雪, 江中浩, 连建设. 镁合金化学镀NiWP合金[J]. 吉林大学学报(工学版), 2010, 40(06): 1562-1566.
[11] 吕晓霞, 苏振国, 陆有, 安健, 李光玉. 经激光表面熔凝处理的Mg-11Y-2.5Zn合金的显微组织和摩擦学性能[J]. 吉林大学学报(工学版), 2010, 40(05): 1250-1255.
[12] 王强,刘耀辉,宋雨来,张大伟,于思荣 . 基于固体培养基(SCM)的镁合金的微生物腐蚀[J]. 吉林大学学报(工学版), 2009, 39(03): 604-0607.
[13] 王明星,周宏,王林,李伟,赵宇 . Y和Ce对AZ91D镁合金显微组织和力学性能的影响[J]. 吉林大学学报(工学版), 2007, 37(01): 6-10.
[14] 宋雨来,刘耀辉,朱先勇,王素环,于思荣. 钕对AZ91镁合金组织及机械性能的影响[J]. 吉林大学学报(工学版), 2006, 36(03): 289-0293.
[15] 牛丽媛, 李光玉,江中浩,孙丽萍,韩冬,连建设. 镁合金镀镍磷合金及无铬前处理工艺[J]. 吉林大学学报(工学版), 2006, 36(02): 148-0152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!