吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (5): 1237-1245.doi: 10.13229/j.cnki.jdxbgxb.20220756

• 材料科学与工程 • 上一篇    

基于BP神经网络和Arrhenius本构模型的石墨烯/7075复合材料热变形行为

娄淑梅(),李一明,李鑫,陈鹏,白雪峰,程宝嘉   

  1. 山东科技大学 智能装备学院,山东 泰安 271019
  • 收稿日期:2022-06-18 出版日期:2024-05-01 发布日期:2024-06-11
  • 作者简介:娄淑梅(1979-),女,教授,博士.研究方向:材料加工工艺控制与塑性成型过程数值模拟. E-mail: msl7119@163.com
  • 基金资助:
    国家自然科学基金项目(51705295);山东省自然科学基金重点项目(ZR2020KE013)

Thermal deformation behavior of graphene nanosheets reinforced 7075Al based on BP neural network and Arrhenius constitutive equation

Shu-mei LOU(),Yi-ming LI,Xin LI,Peng CHEN,Xue-feng BAI,Bao-jia CHENG   

  1. College of Intelligent Equipment,Shandong University of Science and Technology,Taian 271019,China
  • Received:2022-06-18 Online:2024-05-01 Published:2024-06-11

摘要:

在653~713 K温度范围和0.01~10 s-1应变速率下,进行了w(GNP/7075Al)=0.5% 增强7075铝基复合材料的热压缩试验,建立了BP神经网络和应变补偿Arrhenius模型,同时建立了复合材料的热加工图和动态再结晶体积分数预测模型,研究了复合材料的热变形行为,并确定了复合材料的热加工工艺参数。结果表明:BP神经网络模型得到的流变应力预测值与试验结果吻合较好,其相关系数最高为99.9983%,平均相对误差绝对值最小为0.5%,表明神经网络对w(GNP/7075Al)=0.5% 复合材料的热变形行为具有较高的预测精度。w(GNP/7075Al)=0.5%复合材料最佳变形温度和应变速率分别为685~705 K和0.01~0.1 s-1。动态再结晶(DRX)倾向于在低应变速率和高变形温度下发生。数值模拟和热挤压试验表明,在挤压温度693 K、挤压速度1 mm/min的工艺参数下可以挤出表面质量良好的型材。

关键词: 材料加工工程, 石墨烯/铝复合材料, 热变形, 本构方程, 热加工图, 再结晶模型, 数值模拟

Abstract:

At the temperature of 653-713 K and the strain rate of 0.01-10 s-1, Hot compression test of w(GNP/7075Al)= 0.5% composite was applied, and strain compensated Arrhenius and BP neural network model were established. At the same time, the hot processing map and dynamic recrystallization volume fraction prediction model of the composite were established. The hot deformation behavior of the composite was studied, and the hot processing parameters of the composite were determined. The results show that the predicted values of flow stress obtained by BP neural network model are in good agreement with the experimental results. The highest correlation coefficient is 99.998 3%, and the minimum absolute value of average relative error is 0.5%. It shows that neural network has high prediction accuracy for the hot deformation behavior of w(GNP/7075Al)= 0.5% composites. The optimum deformation temperature and strain rate of w(GNP/7075Al)= 0.5% composite are 685-705 K and 0.01-0.1 s-1, respectively. Dynamic recrystallization (DRX) tends to occur at low strain rates and high deformation temperatures. Numerical simulation and hot extrusion test show that the profile with good surface quality can be extruded under the temperature of 693K and extrusion speed 1mm/min.

Key words: materials processing engineering, GNP/Al composites, thermal deformation, constitutive equation, thermal processing map, recrystallization model, numerical simulation

中图分类号: 

  • TG376.2

图1

修正前后 w(GNP/7075Al)=0.5% GNP/7075Al复合材料的真应力应变曲线"

图2

不同应变速率下复合材料流变应力预测曲线与真实试验曲线"

图3

验证组计算结果与试验值比较图"

图4

w(GNP/7075Al)=0.5% GNP/7075Al复合材料热加工图"

图5

应变速率0.01 s-1时w(GNP/7075Al)=0.5% GNP/7075Al复合材料动态再结晶体积分数"

图6

w(GNP/7075Al)=0.5% GNP/7075Al复合材料数值模拟结果"

图7

w(GNP/7075Al)=0.5% GNP/7075Al复合材料挤压型材的表面质量"

1 Pérez-Bustamante R, Bolaños-Morales D, Bonilla-Martínez J, et al. Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying[J]. Journal of Alloys and Compounds, 2014, 615(Sup.1): 5578-5582.
2 Li De-jun, Feng Yao-rong, Yin Zhi-fu, et al. Hot deformation behavior of an austenitic Fe-20Mn-3Si-3Al transformation induced plasticity steel[J]. Materials and Design, 2011, 34: 713-718.
3 He Hai-lin,  Yi You-pin,  Cui Jin-dong, et al. Hot deformation characteristics and processing parameter optimization of 2219 Al alloy using constitutive equation and processing map[J]. Vacuum,2019,160:293-302.
4 Dong Yuan-yuan, Zhang Cun-sheng, Zhao Guo-qun, et al. Constitutive equation and processing maps of an Al-Mg-Si aluminum alloy: determination and application in simulating extrusion process of complex profiles[J]. Materials Design,2016, 92: 983-997.
5 Ramanathan S, Karthikeyan R, Gupta M. Development of processing maps for Al/SiCp composite using fuzzy logic[J]. Journal of Materials Processing Technology, 2007, 183(1): 104-110.
6 Senthilkumar V, Balaji A, Narayanasamy R. Analysis of hot deformation behavior of Al 5083-TiC nanocomposite using constitutive and dynamic material models[J]. Materials & Design, 2012, 37: 102-110.
7 臧雪柏,管秀君,赵宏伟,等.基于遗传算法的神经网络振动钻削参数优化[J].吉林大学学报:工学版,2002, 32(1): 37-41.
Zang Xue-bai, Guan Xiu-jun, Zhao Hong-wei, et al. Optimization of neural network vibration drilling parameter based on genetic algorithm[J]. Journal of Jilin University (Engineering and Technology Edition),2002, 32(1): 37-41.
8 闫楚良,郝云霄,刘克格.基于遗传算法优化的BP神经网络的材料疲劳寿命预测[J].吉林大学学报:工学版,2014,44(6):1710-1715.
Yan Chu-liang, Hao Yun-xiao, Liu Ke-ge,et al. Fatigue life prediction of materials based on BP neural networksoptimized by genetic algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(6): 1710-1715.
9 娄淑梅,张苹苹,冉令伟,等. 石墨烯增强铝基复合材料制备工艺对比与分析[J]. 热加工工艺, 2021, 50(8): 51-54, 58.
Lou Shu-mei, Zhang Ping-ping, Ran Ling-wei, et al. Comparison and analysis of preparation technology of graphene reinforced aluminum matrix composites [J]. Hot Working Technology, 2021, 50(8): 51-54, 58.
10 Ebrahimi R, Najafizadeh A.A new method for evaluation of friction in bulk metal forming[J]. Journal of Materials Processing Tech, 2004, 152(2): 136-143.
11 Zeng Jian, Wang Feng-hua, Dong Shuai, et al. A new dynamic recrystallization kinetics model of cast-homogenized magnesium alloys[J]. Metallurgical and Materials Transactions A, 2020,52(1):1-16.
12 Chen Xiao-min, Wen Dong-xu, Zhan Jin-long,et al. Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation-scienceDirect[J]. Materials & Design, 2014, 57(5): 568-577.
[1] 赵秋,陈鹏,赵煜炜,余澳. 台后设置拱形结构的无缝桥梁整体受力性能[J]. 吉林大学学报(工学版), 2024, 54(4): 1016-1027.
[2] 卫星,高亚杰,康志锐,刘宇辰,赵骏铭,肖林. 低温环境下栓钉环焊缝焊接残余应力场数值模拟[J]. 吉林大学学报(工学版), 2024, 54(1): 198-208.
[3] 郑植,袁佩,金轩慧,魏思斯,耿波. 桥墩复合材料柔性防撞护舷试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2581-2590.
[4] 王峰,刘双瑞,王佳盈,宋佳玲,王俊,张久鹏,黄晓明. 尺寸和形状效应对多孔结构风阻系数的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1677-1685.
[5] 顾正伟,张攀,吕东冶,吴春利,杨忠,谭国金,黄晓明. 基于数值仿真的简支梁桥震致残余位移分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1711-1718.
[6] 魏海斌,韩栓业,毕海鹏,刘琼辉,马子鹏. 智能感知道路主动除冰雪系统及实验技术[J]. 吉林大学学报(工学版), 2023, 53(5): 1411-1417.
[7] 金敬福,董新桔,贾志成,王康,贺连彬,邹猛,齐迎春. 板簧式弹性金属车轮胎面弹片结构优化[J]. 吉林大学学报(工学版), 2023, 53(4): 964-972.
[8] 刘状壮,张有为,季鹏宇,Abshir Ismail Yusuf,李林,郝亚真. 电热型融雪沥青路面传热特性研究[J]. 吉林大学学报(工学版), 2023, 53(2): 523-530.
[9] 解方喜,赵士杰,王梓森,刘爽,李小平,张程. 多孔喷油器闪急沸腾喷雾坍塌影响因素的仿真分析[J]. 吉林大学学报(工学版), 2023, 53(12): 3314-3325.
[10] 梁策,黄富雷,梁继才,李义. 日字形防护梁绕弯成形形变数值模拟[J]. 吉林大学学报(工学版), 2023, 53(12): 3397-3403.
[11] 戴理朝,周亮,杨晓文,王磊. 基于Connector单元的锈蚀RC梁界面粘结性能细观数值模拟[J]. 吉林大学学报(工学版), 2023, 53(10): 2886-2896.
[12] 卢晓红,乔金辉,周宇,马冲,隋国川,孙卓. 搅拌摩擦焊温度场研究进展[J]. 吉林大学学报(工学版), 2023, 53(1): 1-17.
[13] 郑植,耿波,王福敏,董俊宏,魏思斯. 既有低等级混凝土护栏防护能力提升[J]. 吉林大学学报(工学版), 2022, 52(6): 1362-1374.
[14] 梁言,王强,宋雨来,刘耀辉. 新型5Cr5MoV模具钢修复性能[J]. 吉林大学学报(工学版), 2022, 52(6): 1301-1307.
[15] 华琛,牛润新,余彪. 地面车辆机动性评估方法与应用[J]. 吉林大学学报(工学版), 2022, 52(6): 1229-1244.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!