吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (8): 2263-2271.doi: 10.13229/j.cnki.jdxbgxb.20201097
• 材料科学与工程 • 上一篇
朱先勇1,2(),谢良稳1,樊跃香1,姜城1,孙炜佳1,王鹏1,肖雄1
Xian-yong ZHU1,2(),Liang-wen XIE1,Yue-xiang FAN1,Cheng JIANG1,Wei-jia SUN1,Peng WANG1,Xiong XIAO1
摘要:
为改善镁合金表面的微观组织和力学性能,利用搅拌摩擦加工技术对Mg-3.4Al-0.8Zn-0.4Sn镁合金进行了表面改性。采用无针搅拌头,分别设置不同行进速度和旋转速度,通过分析热循环过程、观察表面改性层宏观形貌、进行微观组织表征以及显微硬度测量,研究了工艺参数对表面改性层的影响规律。研究结果表明:表面改性区可分为搅拌层、旋转流动层、过渡层以及热机械影响层;随着行进速度增加,热循环时间缩短且峰值温度降低,表面改性层的厚度减小,平均晶粒尺寸减小,显微硬度增大;随着旋转速度的增加,加工区域峰值温度升高,表面改性层的厚度增大,平均晶粒尺寸增大,显微硬度减小;各工艺参数下获得的改性层相比于母材晶粒明显细化,硬度有所增大。
中图分类号:
1 | 马宗义, 商乔, 倪丁瑞, 等. 镁合金搅拌摩擦焊接的研究现状与展望[J]. 金属学报, 2018, 54(11): 1597-1617. |
Ma Zong-yi, Shang Qiao, Ni Ding-rui, et al. Friction stir welding of magnesium alloys: a review[J]. Acta Metallurgica Sinica, 2018, 54(11): 1597-1617. | |
2 | 郭兴伍, 郭嘉成, 章志铖, 等. 镁合金材料表面处理技术研究新动态[J]. 表面技术, 2017, 46(3): 53-65. |
Guo Xing-wu, Guo Jia-cheng, Zhang Zhi-cheng, et al. New development trend of surface treatment technology for magnesium alloys[J]. Surface Technology, 2017, 46(3): 53-65. | |
3 | Jiang H Y, Ding W B, Zeng X Q, et al. Mechanical behavior of gas tungsten arc surface modified composite layer on mg alloy AZ31 with SiCp and aluminum[J]. Materials Science Forum, 2007, 546-549: 485-490. |
4 | Tsujikawa M, Adachi S, Abe Y, et al. Corrosion protection of Mg-Li alloy by plasma thermal spraying of aluminum[J]. Plasma Processes and Polymers, 2007, 4(Sup.1): 593-596. |
5 | Yang Y, Wu H. Improving the wear resistance of AZ91D magnesium alloys by laser cladding with Al–Si powders[J]. Materials Letters, 2009, 63(1): 19-21. |
6 | Zhang C L, Zhang F, Song L, et al. Corrosion resistance of a superhydrophobic surface on micro-arc oxidation coated Mg-Li-Ca alloy[J]. Journal of Alloys and Compounds, 2017, 728: 815-826. |
7 | 宋雨来, 刘庆, 王海洋. 挤压镁合金腐蚀与防护研究进展[J]. 表面技术, 2020, 49(5): 112-119. |
Song Yu-lai, Liu Qing, Wang Hai-yang. Progress in corrosion and protection of extruded magnesium alloys[J]. Surface Technology, 2020, 49(5): 112-119. | |
8 | Mishra R S, Mahoney M W. Friction stir processing: a new grain refinement technique to achieve high strain rate superplasticity in commercial alloys[J]. Materials Science Forum, 2001, 357-359: 507-514. |
9 | 陈娟, 彭立明, 韩靖宇, 等. 基于摩擦加工技术的镁合金表面改性研究现状[J]. 表面技术, 2017, 46(3): 9-19. |
Chen Juan, Peng Li-ming, Han Jing-yu, et al. Research status of surface modification of magnesium alloys by friction-based processing technology[J]. Surface Technology, 2017, 46(3): 9-19. | |
10 | Commin L, Dumont M, Masse J E, et al. Friction stir welding of AZ31 magnesium alloy rolled sheets: Influence of processing parameters[J]. Acta Materialia, 2009, 57(2): 326-334. |
11 | 卢晓红, 乔金辉, 周宇, 等. 搅拌摩擦焊温度场研究进展[J]. 吉林大学学报:工学版, 2023,53(1):1-17. |
Lu Xiao-hong, Qiao Jin-hui, Zhou Yu, et al. Research progress of temperature field in friction stir welding[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(1): 1-17. | |
12 | Mishra R S, Ma Z Y. Friction stir welding and processing[J]. Materials Science and Engineering: R: Reports, 2005, 50(1/2): 1-78. |
13 | 李于朋, 孙大千, 宫文彪. 6082⁃T6铝合金薄板双轴肩搅拌摩擦焊温度场[J]. 吉林大学学报:工学版, 2019, 49(3): 836-841. |
Li Yu⁃peng, Sun Da⁃qian, Gong Wen⁃biao. Temperature fields in bobbin-tool friction stir welding for 6082-T6 aluminum alloy sheet[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3): 836-841. | |
14 | 徐安莲. 镁合金搅拌摩擦焊接头的显微组织及力学性能[D]. 重庆: 重庆大学材料科学与工程学院, 2016. |
Xu An-lian. Microstructure and mechanical properties of magnesium alloys after friction stir welding[D]. Chongqing: College of Materials Science and Engineering, Chongqing University, 2016. | |
15 | Song W W, Xu X, Zuo D, et al. Study on the corrosion of copper alloy by friction stir surface processing[J]. Anti-Corrosion Methods and Materials, 2016, 63(3): 190-195. |
16 | Song W W, Xu X, Zuo D, et al. Effect of processing parameters and temperature on sliding wear of H62 copper alloy modified by friction stir surface processing[J]. Materials Science, 2017, 23(3):222-226. |
17 | Hamilton C, Węglowski M S, Dymek S. A simulation of friction-stir processing for temperature and material flow[J]. Metallurgical and Materials Transactions B, 2015, 46(3): 1409-1418. |
18 | Węglowski M S, Pietras A, Dymek S, et al. Characterization of friction modified processing-a novel tool for enhancing surface properties in cast aluminium alloys[J]. Key Engineering Materials, 2012, 504-506: 1231-1236. |
19 | Tang W, Guo X, McClure J C, et al. Heat input and temperature distribution in friction stir welding[J]. Journal of Materials Processing & Manufacturing Science, 1998, 7(2): 163-172. |
20 | 王大勇, 冯吉才. 搅拌摩擦焊焊缝表面弧形纹形成模型[J]. 焊接学报, 2003, 24(5): 42-44. |
Wang Da-yong, Feng Ji-cai. Process model of arc corrugation on friction-stir weld[J]. Transactions of The China Welding Institution, 2003, 24(5): 42-44. | |
21 | Ji S D, Meng X C, Ma L, et al. Effect of groove distribution in shoulder on formation, macrostructures, and mechanical properties of pinless friction stir welding of 6061-O aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(9-12): 3051-3058. |
22 | Armstrong R, Codd I, Douthwaite R M, et al. The plastic deformation of polycrystalline aggregates[J]. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 2006, 7(73): 45-58. |
23 | Hall E O. The deformation and ageing of mild steel: III discussion of results[J]. Proceedings of the Physical Society, 1951, 64(9): 747-753. |
24 | Heidarzadeh A, Mironov S, Kaibyshev R, et al. Friction stir welding/processing of metals and alloys: a comprehensive review on microstructural evolution[J]. Progress in Materials Science, 2021, 117:100752. |
[1] | 姬会爽,彭艳,刘洋,杨彦博,高鲲,尔立民. SCR生产线结晶腔铜液凝固行为及质量控制[J]. 吉林大学学报(工学版), 2021, 51(6): 2021-2030. |
[2] | 向红亮,陈盛涛,邓丽萍,张伟,詹土生. 微合金化2205双相不锈钢组织及性能[J]. 吉林大学学报(工学版), 2020, 50(5): 1645-1652. |
[3] | 谷晓燕,隋成龙,狄星,孟政宇,朱开轩,楚长春. 焊接能量对铜/钛超声波焊接接头性能的影响[J]. 吉林大学学报(工学版), 2020, 50(5): 1669-1676. |
[4] | 庄蔚敏,施宏达,解东旋,杨冠男. 钢铝异质无铆钉粘铆复合连接胶层厚度分布[J]. 吉林大学学报(工学版), 2020, 50(1): 100-106. |
[5] | 蔡中义,孟凡响,陈庆敏,赵轩. 复杂钩舌锻件近净成形的预锻形状优化设计[J]. 吉林大学学报(工学版), 2020, 50(1): 84-90. |
[6] | 石舟,寇淑清. 36MnVS4裂解连杆性能分析及轻量化设计[J]. 吉林大学学报(工学版), 2019, 49(6): 1992-2001. |
[7] | 关庆丰,姚欣雯,杨洋,张凌燕,刘迪,李晨,吕鹏. 强流脉冲电子束作用下TC4钛合金表面Cr合金层制备及性能[J]. 吉林大学学报(工学版), 2019, 49(6): 2002-2009. |
[8] | 依卓,付文智,李明哲. 双层剖分式超高压模具数值模拟及实验[J]. 吉林大学学报(工学版), 2019, 49(5): 1593-1599. |
[9] | 谷晓燕,刘东锋,刘婧,孙大千,马会峰. 焊接能量对Cu/Al超声波焊接接头组织与性能的影响[J]. 吉林大学学报(工学版), 2019, 49(5): 1600-1607. |
[10] | 李欣,孙延朋,王丹,陈军绪,谷诤巍,徐虹. 汽车前地板成形有限元数值模拟[J]. 吉林大学学报(工学版), 2019, 49(5): 1608-1614. |
[11] | 李欣,王丹,陈军绪,孙延朋,谷诤巍,徐虹. 手刹固定板冲压成形数值模拟[J]. 吉林大学学报(工学版), 2019, 49(4): 1258-1265. |
[12] | 刘文权,盈亮,荣海,胡平. 基于损伤修正M⁃K模型的高强度钢成形极限预测[J]. 吉林大学学报(工学版), 2019, 49(4): 1266-1271. |
[13] | 张学广,贾明萌,刘纯国,何广忠. 基于增量控制的型材拉弯轨迹设计及有限元仿真[J]. 吉林大学学报(工学版), 2019, 49(4): 1272-1279. |
[14] | 姜秋月,杨海峰,檀财旺. 22MnB5超高强钢焊接接头强化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1806-1810. |
[15] | 胡志清, 颜庭旭, 李洪杰, 吕振华, 廖伟, 刘庚. 深冷处理对铝合金薄板冲剪成形性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1524-1530. |
|