吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (11): 3372-3378.doi: 10.13229/j.cnki.jdxbgxb.20230006

• 通信与控制工程 • 上一篇    

性能选择的下垫式认知无线电功率分配

周明月(),李以峰   

  1. 长春工业大学 计算机科学与工程学院,长春 130012
  • 收稿日期:2023-01-04 出版日期:2024-11-01 发布日期:2025-04-24
  • 作者简介:周明月(1980-),女,副教授,博士.研究方向:认知无线电系统中的资源分配问题.E-mail:zmyjlu@ccut.edu.cn
  • 基金资助:
    吉林省科技厅自然科学金基金项目(20220101135JC);吉林省教育厅项目(JJKH20230761KJ)

Power allocation for a performance-selected underlay cognitive radio

Ming-yue ZHOU(),Yi-feng LI   

  1. School of Science and Engineering,Changchun University of Technology,Changchun 130012,China
  • Received:2023-01-04 Online:2024-11-01 Published:2025-04-24

摘要:

针对Underlay认知无线电网络中各用户的不同目标需求,提出根据用户实际需求灵活调整目标的功率分配方案。提出双目标调整因子对用户功耗和服务质量的性能指标进行配置,构建性能选择目标函数,有效解决传统的功率分配算法下仅考虑单方面性能提高的情况。为验证方案的有效性,对不同调整因子下的用户功率和信干噪比进行仿真分析。实验表明:通过调整目标因子可以实现在低功耗和高服务质量之间进行选择,满足同一场景下各用户的不同需求。

关键词: 认知无线电, 功率分配, 调整因子

Abstract:

Aiming at the different target requirements of each user in the Underlay cognitive radio network, a power allocation scheme that flexibly adjusts the target according to its actual needs is proposed. A dual-objective adjustment factor is proposed to configure the performance indicators of user power consumption and quality of service (QoS), and a performance selection objective function is constructed to effectively solve the problem of only considering unilateral performance improvement under the traditional power allocation algorithm. In order to verify the effectiveness of the scheme, the user power and signal to noise ratio under different adjustment factors are simulated and analyzed. Experiments show that by adjusting the target factor, low power consumption and high quality of service can be selected to meet the different needs of users in the same scenario.

Key words: cognitive radio, power allocation, adjustment factors

中图分类号: 

  • TN 929.5

图1

凸函数的几何图形"

图2

PS算法与TMC算法的功率"

图3

PS算法与TMC算法干扰性能比较"

图4

PS算法与TMP算法的性能比较"

图5

PS算法调整因子的有效性验证"

1 李玲. 认知无线电技术及其典型应用探讨[J]. 中国新通信, 2021, 23(16): 92-93.
Li Ling. Discussion on cognitive radio technology and its typical application[J]. China New Telecommunications, 2021, 23(16): 92-93.
2 Riddle A. Comprehending cognitive radios[J]. IEEE Microwave Magazine, 2017, 18(5): 120-132.
3 陈威龙, 梁俊, 肖楠, 等. 能效优先的鲁棒功率控制算法[J]. 西安交通大学学报, 2021, 55(2): 143-149.
Chen Wei-long, Liang Jun, Xiao Nan, et al. A robust power control algorithm with priority of energy efficiency[J]. Journal of Xi'an Jiaotong University, 2021, 55(2): 143-149.
4 Sun M, Jin M, Guo Q, et al. Throughput maximization for cognitive radio with wirelessly powered primary users[J]. IEEE Systems Journal, 2019, 14(2): 2432-2442.
5 马蓓, 张海林, 张兆维, 等. 基于不完全信道信息的D2D功率分配算法[J]. 吉林大学学报: 工学版, 2016, 46(4): 1320-1324.
Ma Bei, Zhang Hai-lin, Zhang Zhao-wei, et al. Imperfect channel state information based D2D power allocation algorithm[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(4):1320-1324.
6 Wang J, Chen J, You L, et al. Robust power control under location and channel uncertainty in cognitive radio networks[J]. IEEE Wireless Communications Letters, 2017, 4(2): 113-116.
7 Thanuja T C, Daman K A, Patil A S. Optimized spectrum sensing techniques for enhanced throughput in cognitive radio network[C]∥ International Conference on Emerging Smart Computing and Informatics, Pune, India, 2020: 137-141.
8 Wang H, Zhu M, Zhou M. A robust power allocation scheme in ad-hoc cognitive radio networks[J]. International Journal of Online Engineering, 2017, 13(8): 45-59.
9 Xu Y, Chen Q, Huang X. Robust power control for OFDM-based cognitive radio networks with QOS guarantee[J]. Wireless Personal Communications, 2017, 96(2): 2125-2140.
10 Zhu L, Zhao X H. Robust power allocation for OFDM based underlay cognitive radio networks with channel uncertainties[J]. Wireless Personal Communications, 2017, 94(4): 3531-3547.
11 王宏志, 姜方达, 周明月. 基于遗传粒子群优化算法的认知无线电系统功率分配[J]. 吉林大学学报: 工学版, 2019, 49(4): 1363-1368.
Wang Hong-zhi, Jiang Fang-da, Zhou Ming-yue. Power allocation of cognitive radio system based on genetic particle swarm optimization[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(4): 1363-1368.
12 Yousefvand M, Ansari N, Khorsandi S. Maximizing network capacity of cognitive radio networks by capacity-aware spectrum allocation[J]. IEEE Transactions on Wireless Communications, 2015, 14(9): 5058-5067.
13 Pan C, Wang J, Zhang W, et al. Power minimization in multi-band multi-antenna cognitive radio networks[J]. IEEE Transactions on Wireless Communications, 2014, 13(9): 5056-5069.
14 Tsiropoulos G I, Dobre O A, Ahmed M H, et al. Joint channel assignment and power allocation in cognitive radio networks[C]∥ IEEE Global Communications Conference, Austin, USA, 2014: 876-881.
15 Waqas M, Aslam S, Ali Z, et al. Resource optimization for cognitive radio based device to device communication under an energy harvesting scenario[J]. IEEE Access, 2020, 8(1): 24862-24872.
16 Wang H, Yan Y, Zhou M. Resource allocation in OFDM-based cognitive radios under proportional rate constraint[C]∥ Communications and Networking: 12th International Conference, Xi´an, China, 2017: 416-425.
17 朱孟, 王宏志, 周明月, 等. 基于鲁棒的认知无线电功率分配算法[J]. 长春工业大学学报: 自然科学版, 2017, 38(1): 43-47.
Zhu Meng, Wang Hong-zhi, Zhou Ming-yue, et al. Robust power allocation algorithm for cognitive radio systems[J]. Journal of Changchun University of Technology (Natural Science Edition), 2017, 38(1): 43-47.
[1] 杨普,曲庆悦,申逸飞,刘毅. 能量效率最大化的非正交多址接入系统功率分配方法[J]. 吉林大学学报(工学版), 2024, 54(8): 2370-2377.
[2] 李房云,夏容,张怡欣. 考虑电池荷电状态的混合动力汽车复合电源协同控制[J]. 吉林大学学报(工学版), 2024, 54(4): 1114-1119.
[3] 初亮,董力嘉,许楠,张立峰,贾一帆,杨志华. 基于开绕组电机的增程式电动车动力系统构型及其功率分配[J]. 吉林大学学报(工学版), 2021, 51(1): 72-82.
[4] 李翠然,于永生,谢健骊. 基于次用户优先级的频谱共享动态博弈算法[J]. 吉林大学学报(工学版), 2020, 50(1): 315-323.
[5] 王宏志,姜方达,周明月. 基于遗传粒子群优化算法的认知无线电系统功率分配[J]. 吉林大学学报(工学版), 2019, 49(4): 1363-1368.
[6] 马蓓, 张海林, 张兆维, 钟鸣. 基于不完全信道信息的D2D功率分配算法[J]. 吉林大学学报(工学版), 2016, 46(4): 1320-1324.
[7] 栾磊, 赵晓晖, 徐勇军. 面向区域的认知无线电系统的频谱感知模型[J]. 吉林大学学报(工学版), 2016, 46(4): 1304-1312.
[8] 陈健, 樊光辉, 阔永红. 认知无线电中继协助网络资源分层优化算法[J]. 吉林大学学报(工学版), 2014, 44(5): 1498-1505.
[9] 赵晓晖, 沙京祺. 基于DF中继的认知OFDM协作系统的资源分配算法[J]. 吉林大学学报(工学版), 2014, 44(5): 1481-1487.
[10] 贺岩, 赵晓晖. 理论的宽带多用户认知系统合作检测[J]. 吉林大学学报(工学版), 2014, 44(4): 1165-1170.
[11] 赵晓晖, 杨伟伟, 金晓光. 多中继OFDM系统选择性子载波中继和功率分配算法[J]. 吉林大学学报(工学版), 2014, 44(2): 478-484.
[12] 李美玲, 袁超伟, 赵伟, 韩曦. 基于目标对象的最佳中继协作频谱感知方案[J]. 吉林大学学报(工学版), 2013, 43(04): 1098-1103.
[13] 王小龍, 坂上岩太, 高橋健作, 岡村信吾. 基于端口分离的小型化Wilkinson功率分配器[J]. , 2012, 42(05): 1309-1314.
[14] 李居朋, 谈振辉, 陶成, 徐少毅. 基于多特征参数模型聚类的动态频谱接入策略[J]. , 2012, 42(04): 1021-1026.
[15] 施玉晨, 白宝明. 基于叠加调制和自适应功率分配的干扰抵消[J]. 吉林大学学报(工学版), 2012, 42(01): 213-217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!