吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (4): 1363-1373.doi: 10.13229/j.cnki.jdxbgxb.20230756
刘广文1(
),赵绮莹1,王超2,高连宇1,才华1(
),付强3
Guang-wen LIU1(
),Qi-ying ZHAO1,Chao WANG2,Lian-yu Gao1,Hua CAI1(
),Qiang FU3
摘要:
为了解决传统生成对抗网络(GAN)在去雨问题中因网络容量不均衡而表现不佳的问题,提出了一种基于渐进递归的生成对抗单幅图像去雨算法。该方法采用了渐进递归模块生成器和多尺度特征模块鉴别器,旨在提高生成器效率并增强鉴别能力。渐进递归模块通过融合多尺度特征并构建渐进递归结构,不仅减轻了网络参数的负担,也提高了生成器的效率。与此同时,多尺度特征模块有助于鉴别器从局部和全局两个层面提取特征,从而增强了其鉴别能力。实验结果表明:相较于现有算法,本文算法在Rain100L数据集上峰值信噪比(PSNR)和结构相似性(SSIM)指标提高了1.11%和1.16%;在Rain100H数据集上将指标分别提高了3.28%和1.01%;在真实数据集上,本文算法在去雨任务中表现出色,成功地保留了大部分细节特征。这些实验结果充分验证了本文算法的有效性和鲁棒性。
中图分类号:
| [1] | 陈舒曼, 陈玮, 尹钟. 单幅图像去雨算法研究现状及展望 [J]. 计算机应用研究, 2022, 39 (1): 9-17. |
| Chen shu-man, Chen wei, Yin Zhong. Research status and prospect of single image ram removal algorithm[J]. Application Research of Computers, 2022, 39(1): 9-17. | |
| [2] | Sun P, Zhang R, Jiang Y, et al. Sparse R-CNN: end-to-end object detection with learnable proposals[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Nashville, USA, 2021: 14454-14463. |
| [3] | Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers[C] ∥Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, 2020: 213-229. |
| [4] | Fu Z, Fu Z, Liu Q, et al. SparseTT: visual tracking with sparse transformers[J/OL].[2023-07-05].. |
| [5] | Song Z, Yu J, Chen Y P P, et al. Transformer tracking with cyclic shifting window attention[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 8791-8800. |
| [6] | Yan W, Tan R T, Yang W, et al. Self-aligned video deraining with transmission-depth consistency[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 11966-11976. |
| [7] | Yue Z, Xie J, Zhao Q, et al. Semi-supervised video deraining with dynamical rain generator[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 642-652. |
| [8] | Li Y, Tan R T, Guo X, et al. Rain streak removal using layer priors[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2736-2744. |
| [9] | Kim J H, Sim J Y, Kim C S. Video deraining and desnowing using temporal correlation and low-rank matrix completion[J]. IEEE Transactions on Image Processing, 2015, 24(9): 2658-2670. |
| [10] | Jiang T X, Huang T Z, Zhao X L, et al. A novel tensor-based video rain streaks removal approach via utilizing discriminatively intrinsic priors[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Honolulu, USA, 2017: 4057-4066. |
| [11] | Zhang H, Sindagi V, Patel V M. Image de-raining using a conditional generative adversarial network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 30(11): 3943-3956. |
| [12] | Qian R, Tan R T, Yang W, et al. Attentive generative adversarial network for raindrop removal from a single image[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 2482-2491. |
| [13] | Wei Y, Zhang Z, Wang Y, et al. Deraincyclegan: rain attentive cyclegan for single image deraining and rainmaking[J]. IEEE Transactions on Image Processing, 2021, 30: 4788-4801. |
| [14] | Metz L, Poole B, Pfau D, et al.Unrolled generative adversarial networks[J/OL].[2023-07-05].. |
| [15] | Fu X, Huang J, Zeng D, et al. Removing rain from single images via a deep detail network[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 3855-3863. |
| [16] | Yang W, Tan R T, Feng J, et al. Deep joint rain detection and removal from a single image[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA,2017: 1357-1366. |
| [17] | Zhang H, Patel V M. Density-aware single image de-raining using a multi-stream dense network[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake City, USA, 2018: 695-704. |
| [18] | Li X, Wu J, Lin Z, et al. Recurrent squeeze-and-excitation context aggregation net for single image deraining[C]∥Proceedings of the European Conference on Computer Vision (ECCV),Munich, Germany, 2018: 254-269. |
| [19] | Ren D, Zuo W, Hu Q, et al. Progressive image deraining networks: a better and simpler baseline[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 3937-3946. |
| [20] | Jiang K, Wang Z, Yi P, et al. Multi-scale progressive fusion network for single image deraining[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA,2020: 8346-8355. |
| [21] | Kupyn O, Budzan V, Mykhailych M, et al. Deblurgan: blind motion deblurring using conditional adversarial networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake City, USA, 2018: 8183-8192. |
| [22] | Isola P, Zhu J Y, Zhou T, et al. Image-to-image translation with conditional adversarial networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Honolulu, USA, 2017: 1125-1134. |
| [23] | Ye Y, Chang Y, Zhou H, et al. Closing the loop: joint rain generation and removal via disentangled image translation[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 2053-2062. |
| [24] | Huang H, Yu A, He R. Memory oriented transfer learning for semi-supervised image deraining[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern recognition,Nashville, USA, 2021: 7732-7741. |
| [1] | 潘义勇,徐家聪,尤逸文,全勇俊. 网约车出行需求影响因素多尺度空间异质性分析[J]. 吉林大学学报(工学版), 2025, 55(5): 1567-1575. |
| [2] | 侯越,郭劲松,林伟,张迪,武月,张鑫. 分割可跨越车道分界线的多视角视频车速提取方法[J]. 吉林大学学报(工学版), 2025, 55(5): 1692-1704. |
| [3] | 才华,王玉瑶,付强,马智勇,王伟刚,张晨洁. 基于注意力机制和特征融合的语义分割网络[J]. 吉林大学学报(工学版), 2025, 55(4): 1384-1395. |
| [4] | 刘广文,谢欣月,付强,才华,王伟刚,马智勇. 基于时空模板焦点注意的Transformer目标跟踪算法[J]. 吉林大学学报(工学版), 2025, 55(3): 1037-1049. |
| [5] | 李学军,权林霏,刘冬梅,于树友. 基于Faster-RCNN改进的交通标志检测算法[J]. 吉林大学学报(工学版), 2025, 55(3): 938-946. |
| [6] | 程德强,刘规,寇旗旗,张剑英,江鹤. 基于自适应大核注意力的轻量级图像超分辨率网络[J]. 吉林大学学报(工学版), 2025, 55(3): 1015-1027. |
| [7] | 季渊,虞雅淇. 基于密集卷积生成对抗网络与关键帧的说话人脸视频生成优化算法[J]. 吉林大学学报(工学版), 2025, 55(3): 986-992. |
| [8] | 才华,郑延阳,付强,王晟宇,王伟刚,马智勇. 基于多尺度候选融合与优化的三维目标检测算法[J]. 吉林大学学报(工学版), 2025, 55(2): 709-721. |
| [9] | 张曦,库少平. 基于生成对抗网络的人脸超分辨率重建方法[J]. 吉林大学学报(工学版), 2025, 55(1): 333-338. |
| [10] | 王宏志,宋明轩,程超,解东旋. 基于改进YOLOv5算法的道路目标检测方法[J]. 吉林大学学报(工学版), 2024, 54(9): 2658-2667. |
| [11] | 朱圣杰,王宣,徐芳,彭佳琦,王远超. 机载广域遥感图像的尺度归一化目标检测方法[J]. 吉林大学学报(工学版), 2024, 54(8): 2329-2337. |
| [12] | 赖丹晖,罗伟峰,袁旭东,邱子良. 复杂环境下多模态手势关键点特征提取算法[J]. 吉林大学学报(工学版), 2024, 54(8): 2288-2294. |
| [13] | 才华,寇婷婷,杨依宁,马智勇,王伟刚,孙俊喜. 基于轨迹优化的三维车辆多目标跟踪[J]. 吉林大学学报(工学版), 2024, 54(8): 2338-2347. |
| [14] | 温晓岳,钱国敏,孔桦桦,缪月洁,王殿海. TrafficPro:一种针对城市信控路网的路段速度预测框架[J]. 吉林大学学报(工学版), 2024, 54(8): 2214-2222. |
| [15] | 郭昕刚,何颖晨,程超. 抗噪声的分步式图像超分辨率重构算法[J]. 吉林大学学报(工学版), 2024, 54(7): 2063-2071. |
|