吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (1): 259-267.doi: 10.13229/j.cnki.jdxbgxb.20230802

• 农业工程·仿生工程 • 上一篇    

具有高效吸能特性的新型仿蜂窝多级薄壁结构

张永忠1,2(),马云海1,3   

  1. 1.吉林大学 生物与农业工程学院,长春 130022
    2.北京城市学院 智能电子制造研究中心,北京 101309
    3.人工结构化材料技术研究所 辽宁材料实验室,沈阳 110167
  • 收稿日期:2023-07-30 出版日期:2024-01-30 发布日期:2024-03-28
  • 作者简介:张永忠(1983-),男,高级工程师,博士研究生.研究方向:智能制造.E-mail:swordbeijing@163.com
  • 基金资助:
    国家自然科学基金项目(52275288);吉林省科技发展计划项目(20210202021NC);长春市科技发展计划项目(21ZGN15)

New honeycomb multi-stage thin-walled structure with high efficiency energy absorption characteristics

Yong-zhong ZHANG1,2(),Yun-hai MA1,3   

  1. 1.College of Biological and Agricultural Engineering,Jilin University,Changchun 130022,China
    2.Intelligent Electronic Manufacturing Research Center,Beijing City University,Beijing 101309,China
    3.Institute of Structured and Architected Materials,Liaoning Academy of Materials,Shenyang 110167,China
  • Received:2023-07-30 Online:2024-01-30 Published:2024-03-28

摘要:

针对现有薄壁结构存在比吸能不高、压缩力效率较低的问题,以蜂窝为原型,模拟蜂窝多级嵌套结构,进行仿生结构优化设计。为了更好地探究形状参数对吸能能力的影响,进一步以相对旋转角度及加强柱直径为设计变量,设计了共20种仿蜂窝多级薄壁结构。运用3D打印技术,制备了尼龙材质的仿蜂窝多级薄壁结构样件,并进行准静态压缩试验。最后,对比分析了数值模拟结果与试验结果,得出以下结论:本文吸能能力最强的模型为YMT20-3.6,比吸能达到了10.87 J·g-1,较初始模型YMT0-0提高了约86%;旋转角度越大,加强柱直径越大,模型截面面积分布越均匀,模型变形模式也趋于对称,其能量吸收能力也更强;较大的旋转角度拥有更优异的吸能能力,但是其压缩力效率较小。增大模型加强柱直径能够减少旋转角度对压缩力效率的影响,提高模型的压缩力效率,从而得到吸能能力强、压缩力效率高的薄壁结构。

关键词: 仿生设计, 多级结构, 增材制造, 高效吸能

Abstract:

The existing thin-walled structure has the problem of low specific energy absorption and low compression efficiency. The honeycomb was used as a prototype to simulate the multi-level nested structure of honeycomb and the optimization design of bionic structure was carried out. In order to better explore the influence of shape parameters on energy absorption capacity, a total of 20 honeycomb multi-stage thin-walled structures were designed based on the relative rotation angle and the diameter of the reinforced column. Using 3D printing technology, a multi-stage thin-walled structure sample of imitation honeycomb made of nylon was prepared, and a quasi-static compression test was carried out. Finally, the numerical simulation results and experimental results are compared and analyzed, and the following conclusions are drawn: the model with the strongest energy absorption capacity in this paper is YMT20-3.6, reaching 10.87 J·g-1, which is about 86% higher than that of the initial model YMT0-0. The larger the rotation angle, the larger the diameter of the reinforcement column, the more uniform the distribution of the cross-sectional area of the model, the symmetrical deformation mode of the model, and the stronger its energy absorption capacity. A larger rotation angle has better energy absorption, but its compression force efficiency is less. Increasing the diameter of the model strengthening column can reduce the influence of rotation angle on the compression force efficiency and improve the compression force efficiency of the model, so as to obtain a thin-walled structure with strong energy absorption capacity and high compression force efficiency.

Key words: bionic design, multi-level structure, additive manufacturing, efficient energy absorption

中图分类号: 

  • TP391

图1

类蜂窝多胞薄壁结构设计思路"

图2

尼龙材料特性曲线"

图3

MT结构有限元模型"

表2

尼龙材料参数"

参数数值
密度/(kg·m-31140
泊松比0.3
弹性模量/MPa630
屈服应力/MPa36
切线模量/MPa115

图4

网格无关性分析"

图5

力位移曲线及平均压溃力"

图6

样件压缩变形过程及应力云图"

图7

样件变形模式"

图8

仿蜂窝多胞薄壁结构吸能特性对比图"

1 范晓文, 杨欣, 许述财, 等. 仿骨单位薄壁结构轴向和斜向耐撞性研究[J]. 载人航天, 2020, 26(2): 142-151.
Fan Xiao-wen, Yang Xin, Xu Shu-cai, et al. Study on axial and oblique crashworthiness of thin wall structure of bone imitation unit[J]. Manned Spaceflight, 2020, 26(2): 142-151.
2 吕掌权. 面向增材制造的汽车薄壁结构轻量化建模方法[D]. 大连:大连理工大学汽车工程学院, 2016.
Lu Zhang-quan. Lightweight modeling method for automotive thin-wall structure oriented to additive manufacturing[D]. Dalian: College of Automotive Engineering, Dalian University of Technology, 2016.
3 Zhang Lin-wei, Bai Zhong-hao, Bai Fang-hua. Crashworthiness design for bio-inspired multi-cell tubes with quadrilateral, hexagonal and octagonal sections[J]. Thin-Walled Structures, 2018, 122: 42-51.
4 Zhang Wen, Yu T X, Xu Jun. Uncover the underlying mechanisms of topology and structural hierarchy in energy absorption performances of bamboo-inspired tubular honeycomb[J]. Extreme Mechanics Letters, 2022, 52:No. 101640.
5 Wang Jin, Zhang Yong, He Ning, et al. Crashworthiness behavior of Koch fractal structures[J]. Materials & Design, 2018, 144: 229-244.
6 Xia Ping, Liu Qian-cheng, Fu Hua, et al. Mechanical properties and energy absorption of 3D printed double-layered helix honeycomb under in-plane compression[J]. Composite Structures, 2023, 315:No. 116982.
7 Wu Fei, Chen Ya-ting, Zhao Shun-qiu, et al. Mechanical properties and energy absorption of composite bio-inspired multi-cell tubes[J]. Thin-Walled Structures, 2023, 184.
8 黄晗, 许述财, 杜雯菁, 等. 基于虾螯结构的仿生薄壁管吸能特性分析及优化[J]. 北京理工大学学报, 2020, 40(3): 267-274.
Huang Han, Xu Shu-cai, Du Wen-jing, et al. Analysis and optimization of energy absorption characteristics of biomimetic thin-walled tube based on chelate structure of shrimp[J]. Transactions of Beijing Institute of Technology, 2020, 40(3): 267-274.
9 肖勇. 面向车用的碳纤维薄壁梁铝蜂窝填充结构耐撞性研究[D]. 武汉:武汉理工大学材料科学与工程学院, 2018.
Xiao Yong. Crashworthiness of Aluminum Honeycomb Filled Structure of Carbon Fiber Thin-wall Beam for Vehicle[D]. Wuhan: College of Materials Sciences and Engineering,Wuhan University of Technology, 2018.
10 于征磊, 信仁龙, 陈立新, 等. 仿蜂窝防护结构的承载特性[J]. 吉林大学学报: 工学版, 2021, 51(3): 1140-1145.
Yu Zheng-lei, Xin Ren-long, Chen Li-xin, et al. Load bearing characteristics of honeycomb protection structure[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(3): 1140-1145.
11 Goyal S, Anand C S, Sharma S K, et al. Crashworthiness analysis of foam filled star shape polygon of thin-walled structure[J]. Thin-Walled Structures, 2019, 144:No. 106312.
12 丁明. 仿藕类蜂窝多胞薄壁结构的耐撞性研究[D]. 长沙:湖南大学机械与运载工程学院, 2020.
Ding Ming. Crashworthiness of Honeycomb Multicellular Thin-walled Structures of lotus root[D]. Changsha:College of Mechinacal and Vehicle Engineering, Hunan University, 2020.
13 Huang Jia-le, Zheng Zi-yu, Deng Xiao-lin, et al. Crashworthiness analysis of gradient fractal thin-walled structure[J]. Thin-Walled Structures, 2022, 181:No. 110102.
14 Palombini F L, Mariath J E D A, Oliveira B F D. Bionic design of thin-walled structure based on the geometry of the vascular bundles of bamboo[J]. Thin-Walled Structures 2020,155:No. 106936.
15 Qiu Na, Gao Yun-kai, Fang Jiang-guang, et al. Crashworthiness analysis and design of multi-cell hexagonal columns under multiple loading cases[J]. Finite Elements in Analysis and Design, 2015, 104: 89-101.
16 邓敏杰, 刘志芳. 仿马尾草薄壁结构的设计与耐撞性研究[J]. 高压物理学报, 2022, 36(3): 111-120.
Deng Min-jie, Liu Zhi-fang. Design and crashworthiness of thin wall structure imitating horsetail grass[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 111-120.
17 Wei Zhi-quan, Xu Xiang-hong. Numerical study on impact resistance of novel multilevel bionic thin-walled structures[J]. Journal of Materials Research and Technology, 2022, 16: 1770-1780.
18 李瑞涛, 唐刚, 夏辉, 等. 二维随机蜂巢网格熔断动力学过程和熔断面标度性质的数值模拟[J]. 物理学报, 2019, 68(5): 25-34.
Li Rui-tao, Tang Gang, Xia Hui, et al. Numerical Simulation of Fusion Dynamic Process and scale Properties of Fusion surface in two-dimensional Random Honeycomb Grid[J]. Acta Physica Sinica, 2019, 68(5): 25-34.
19 许欣, 郑丰, 孔俊, 等. 冷链运输包装纸板的研究现状及发展趋势[J]. 包装工程, 2021, 42(21): 133-142.
Xu Xin, Zheng Feng, Kong Jun, et al. Research status and development trend of cold chain transport packaging board[J]. Packaging Engineering, 201, 42(21): 133-142.
20 Huang Jiang-ping, He Kai, Liu Rong-qiang, et al. Theoretical and numerical investigation of mean crushing load of uniform and non-uniform multi-cell tube[J]. Thin-Walled Structures, 2022, 180:No. 109956.
[1] 邹猛,郭子琦,陈朕,曹洪涛,朱建中,徐丽涵. 模拟月尘与典型金属材料摩擦磨损特性试验[J]. 吉林大学学报(工学版), 2022, 52(10): 2307-2315.
[2] 于征磊,陈立新,徐泽洲,信仁龙,马龙,金敬福,张志辉,江山. 基于增材制造的仿生防护结构力学及回复特性分析[J]. 吉林大学学报(工学版), 2021, 51(4): 1540-1547.
[3] 翁小辉,孙友宏,张书军,谢军,常志勇. 基于仿生鼻腔优化的油气检测方法与实验新技术[J]. 吉林大学学报(工学版), 2020, 50(1): 382-388.
[4] 陈东良,臧睿,段鹏,赵伟鹏,翁旭涛,孙杨,唐艺鹏. 基于新月鱼尾推进理论的多连杆鱼骨仿生设计[J]. 吉林大学学报(工学版), 2019, 49(4): 1246-1257.
[5] 钱志辉, 周亮, 任雷, 任露泉. 具有仿生距下关节和跖趾关节的完全被动步行机[J]. 吉林大学学报(工学版), 2018, 48(1): 205-211.
[6] 陈东辉, 刘伟, 吕建华, 常志勇, 吴婷, 慕海锋. 基于虾夷扇贝体表结构的玉米茬根捡拾器仿生设计[J]. 吉林大学学报(工学版), 2017, 47(4): 1185-1193.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!