吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (11): 3289-3295.doi: 10.13229/j.cnki.jdxbgxb.20230889

• 计算机科学与技术 • 上一篇    

复杂背景下遥感影像敏感小目标细粒度智能识别

王方石(),鲍鹏   

  1. 北京交通大学 软件学院,北京 100044
  • 收稿日期:2023-08-22 出版日期:2024-11-01 发布日期:2025-04-24
  • 作者简介:王方石(1969-),女,教授,博士.研究方向:数字图像处理,计算机视觉,模式识别.E-mail:Wangfangshi2023@163.com
  • 基金资助:
    国家自然科学基金项目(62272032)

Intelligent Recognition of sensitive small targets with fine grains in complex background remote sensing images

Fang-shi WANG(),Peng BAO   

  1. School of Software Engineering,Beijing Jiaotong University,Beijing 100044,China
  • Received:2023-08-22 Online:2024-11-01 Published:2025-04-24

摘要:

为促进计算机视觉技术的发展,提高遥感影像信息利用率,本文提出了复杂背景遥感影像敏感小目标细粒度智能识别。首先,利用中值滤波算法去除原始遥感影像中的干扰噪声,对图像实施灰度化处理后,通过背景分割阈值的合理选取,实现遥感影像内复杂背景与识别目标的划分,避免遥感影像背景信息对后续目标识别精度的影响。将处理后的遥感影像输入CNN网络,利用空间选择方法,在网络卷积层特征图输出的基础上,对遥感影像内的主体信息特征展开精炼提取,得到用于敏感小目标识别的遥感影像主体细粒度特征;结合ELM分类机制构建ELM小目标识别模型,实现遥感影像中敏感小目标的细粒度识别。实验证明,本文方法在面对包含多类别主体的遥感图像时,能做到特定小目标的精准识别,有效提高了遥感影像内信息的利用效率,对重要情报的获取具有重大意义。

关键词: 中值滤波算法, 灰度化处理, CNN网络, ELM分类机制

Abstract:

In order to promote the development of computer vision technology and improve the utilization of remote sensing image information, the proposed method proposes fine-grained intelligent recognition of sensitive small targets in complex background remote sensing images. The proposed method first utilizes a median filtering algorithm to remove interference noise from the original remote sensing image. After graying out the image, a reasonable selection of background segmentation threshold is used to achieve the division of complex backgrounds and recognition targets in the remote sensing image, avoiding the impact of background information in the remote sensing image on the accuracy of subsequent target recognition. Input the processed remote sensing image into the CNN network, and use spatial selection method to refine and extract the main information features in the remote sensing image based on the output of the network convolutional layer feature map, obtaining fine-grained features of the remote sensing image for sensitive small target recognition; Construct an ELM small target recognition model based on the ELM classification mechanism to achieve fine-grained recognition of sensitive small targets in remote sensing images. Experiments have shown that the proposed method can achieve precise recognition of specific small targets in remote sensing images containing multiple categories of subjects, effectively improving the utilization efficiency of information in remote sensing images, and has significant significance for obtaining important intelligence.

Key words: median filtering algorithm, grayscale processing, cnn network, elm classification mechanism

中图分类号: 

  • TP751

表1

清晰度计算结果"

图像尺寸清晰度计算结果
本文方法文献[3]方法文献[4]方法
150×1202 2391 8622 035
230×1853 6411 9632 265
320×2305 3671 7625 630
400×2505 3674 3053 650
490×3236 4855 3944 065
530×3875 3694 9384 295
645×4756 5385 0364 935
760×5056 9725 5674 365

图1

多类别植被分布识别"

图2

小目标识别结果对比"

1 谢康, 陈晓斌, 尧俊凯, 等. 基于机器视觉的建筑垃圾填料物质组分图像分析方法[J]. 华南理工大学学报: 自然科学版, 2021, 49(10): 50-58.
Xie Kang, Chen Xiao-bin, Yao Jun-kai, et al. Image analysis method of construction waste filler material components based on machine vision[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(10): 50-58.
2 杨敏航, 陈龙, 刘慧, 等. 基于图卷积网络的多标签遥感图像分类[J]. 计算机应用研究, 2021, 38(11): 3439-3445.
Yang Min-hang, Chen Long, Liu Hui, et al. Multi-label remote sensing image classification based on graph convolutional network[J]. Application Research of Computers, 2021, 38(11): 3439-3445.
3 姜亚楠, 张欣, 张春雷, 等. 基于多尺度LBP特征融合的遥感图像分类[J]. 自然资源遥感, 2021, 33(3): 36-44.
Jiang Ya-nan, Zhang Xin, Zhang Chun-lei, et al. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
4 沈瑜, 王海龙, 苑玉彬, 等. 基于改进LinkNet的寒旱区遥感图像河流识别方法[J]. 农业机械学报, 2022, 53(7): 217-225.
Shen Yu, Wang Hai-long, Yuan Yu-bin, et al. Recognition of rivers in remote sensing images in cold and arid regions based on improved LinkNet[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(7): 217-225.
5 赵晓宇, 陈建军, 张凯琪, 等. 基于HSV色彩空间和Otsu算法的无人机影像植被覆盖度自动提取[J]. 科学技术与工程, 2021, 21(35): 15160-15166.
Zhao Xiao-yu, Chen Jian-jun, Zhang Kai-qi, et al. Automatic extraction of vegetation coverage from unmanned aerial vehicle images based on HSV and Otsu algorithm[J]. Science Technology and Engineering, 2021, 21(35): 15160-15166.
6 李皓, 翟月鹏, 杨小龙, 等. 基于层次分析-有序加权平均多准则评估的雄安新区生态安全格局模拟研究[J]. 生态学报, 2022, 42(1): 150-160.
Li Hao, Zhai Yue-peng, Yang Xiao-long, et al. Simulating ecological security patterns in the Xiong'an new area based on the multicriteria evaluation of AHP-OWA[J]. Acta Ecologica Sinica, 2022, 42(1): 150-160.
7 宋雨, 王亚林, 杜博军, 等. 基于改进最大类间方差法的靶板重孔检测[J]. 兵工学报, 2022, 43(4): 924-930.
Song Yu, Wang Ya-lin, Du Bo-jun, et al. Detection of overlapped bullet holes based on improved otsu's thresholding method[J]. Acta Armamentarii, 2022, 43(4): 924-930.
8 宋建辉, 王思宇, 刘砚菊, 等. 基于改进FFRCNN网络的无人机地面小目标检测算法[J]. 电光与控制, 2022, 29(7): 69-73.
Song Jian-hui, Wang Si-yu, Liu Yan-ju, et al. Ground small target detection algorithm of UAV based on improved FFRCNN network[J]. Electronics Optics & Control, 2022, 29(7): 69-73.
9 李经宇, 杨静, 孔斌, 等. 基于注意力机制的多尺度车辆行人检测算法[J]. 光学精密工程, 2021, 29(6): 1448-1458.
Li Jing-yu, Yang Jing, Kong Bin, et al. Multi-scale vehicle and pedestrian detection algorithm based on attention mechanism[J]. Optics and Precision Engineering, 2021, 29(6): 1448-1458.
10 毛伊敏, 张瑞朋, 高波. 大数据下基于特征图的深度卷积神经网络[J]. 计算机工程与应用, 2022, 58(15): 110-116.
Mao Yi-min, Zhang Rui-peng, Gao Bo. Deep convolutional neural network algorithm based on feature map in big data environment[J]. Computer Engineering and Applications, 2022, 58(15): 110-116.
11 孙学进, 李靖, 曹绍华, 等. 多尺度注意力聚合图卷积的高光谱分类[J]. 湖南科技大学学报: 自然科学版, 2022, 37(4): 94-103.
Sun Xue-jin, Li Jing, Cao Shao-hua, et al. Graph convolution with multi-scale attention aggregation for hyperspectral classification[J]. Journal of Hunan University of Science and Technology (Natural Science Edition), 2022, 37(4): 94-103.
12 李雪, 张琳玮, 姜涛, 等. 基于拉格朗日乘子的电力系统安全域边界通用搜索方法[J]. 中国电机工程学报, 2021, 41(15): 5139-5153.
Li Xue, Zhang Lin-wei, Jiang Tao, et al. General algorithm for exploring security region boundary in power systems using lagrange multiplier[J]. Proceedings of the CSEE, 2021, 41(15): 5139-5153.
[1] 杨军,韩鹏飞. 采用神经网络架构搜索的高分辨率遥感影像目标检测[J]. 吉林大学学报(工学版), 2024, 54(9): 2646-2657.
[2] 张云佐,郭威,李文博. 遥感图像密集小目标全方位精准检测算法[J]. 吉林大学学报(工学版), 2024, 54(4): 1105-1113.
[3] 王德兴,高凯,袁红春,杨钰锐,王越,孔令栋. 基于色彩校正和TransFormer细节锐化的水下图像增强[J]. 吉林大学学报(工学版), 2024, 54(3): 785-796.
[4] 王春华,李恩泽,肖敏. 多特征融合和孪生注意力网络的高分辨率遥感图像目标检测[J]. 吉林大学学报(工学版), 2024, 54(1): 240-250.
[5] 成丽波,李新月,李喆,贾小宁. 基于曲波变换与拟合优度检验的遥感图像去噪方法[J]. 吉林大学学报(工学版), 2023, 53(11): 3207-3213.
[6] 蔡志丹,方明,李喆,许佳路. 基于高斯曲率和加权图总变分正则化的遥感图像盲去模糊算法[J]. 吉林大学学报(工学版), 2023, 53(9): 2649-2658.
[7] 王柯俨,王迪,赵熹,陈静怡,李云松. 基于卷积神经网络的联合估计图像去雾算法[J]. 吉林大学学报(工学版), 2020, 50(5): 1771-1777.
[8] 郭继昌,吴洁,郭春乐,朱明辉. 基于残差连接卷积神经网络的图像超分辨率重构[J]. 吉林大学学报(工学版), 2019, 49(5): 1726-1734.
[9] 王柯俨, 李云松, 宋娟, 廖惠琳, 吴宪云. 基于局部边缘预测的空谱联合高光谱图像无损压缩[J]. 吉林大学学报(工学版), 2017, 47(2): 677-685.
[10] 赵博, 秦贵和. 高 鲁 棒 性 的 图 像 水 印 算 法[J]. 吉林大学学报(工学版), 2017, 47(1): 249-254.
[11] 姜超, 耿则勋, 刘立勇, 潘映峰. 结合噪声去除的极大似然图像复原[J]. 吉林大学学报(工学版), 2015, 45(4): 1360-1366.
[12] 李晖晖, 滑立, 杨宁, 刘坤. 基于MSA特征和模拟退火优化的遥感图像多目标关联算法[J]. 吉林大学学报(工学版), 2015, 45(4): 1353-1359.
[13] 王京萌, 张爱武, 赵宁宁, 孟宪刚. 斜采样的倾斜角度对采样产生混叠的影响及其与分辨率的关系[J]. 吉林大学学报(工学版), 2015, 45(3): 953-960.
[14] 刘春香, 郭永飞, 李宁, 薛旭成, 吕恒毅. 多通道航天相机内部的图像实时合成压缩[J]. 吉林大学学报(工学版), 2013, 43(06): 1680-1684.
[15] 付朝阳,郭雷,常威威. 网络的高光谱图像融合[J]. 吉林大学学报(工学版), 2011, 41(03): 838-843.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!