吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (11): 3302-3308.doi: 10.13229/j.cnki.jdxbgxb.20230956

• 计算机科学与技术 • 上一篇    

基于实时数据特征和XGBoost算法的城市公共交通枢纽客流量预测

姚明辉(),王威超,吴启亮,牛燕   

  1. 天津工业大学 人工智能学院,天津 300387
  • 收稿日期:2023-09-08 出版日期:2024-11-01 发布日期:2025-04-24
  • 作者简介:姚明辉(1971-),女,教授,博士.研究方向:振动俘能,人工智能等.E-mail:yyymh963@126.com
  • 基金资助:
    国家自然科学基金项目(12232014);天津市自然科学基金项目(19JCZDJC3230)

Passenger flow prediction of urban public transportation hubs based on real-time data features and XGBoost algorithm

Ming-hui YAO(),Wei-chao WANG,Qi-liang WU,Yan NIU   

  1. School of Artificial Intelligence,TianGong University,Tianjin 300387,China
  • Received:2023-09-08 Online:2024-11-01 Published:2025-04-24

摘要:

针对城市公共交通枢纽客流量具有随机性、相关性等特点,提出了基于实时数据特征和XGBoost算法的城市公共交通枢纽客流量预测。首先,通过AdamOptimizer算法优化自动编码器,并将城市公共交通枢纽实时客流量数据特征矩阵输入优化后自动编码器,提取数据特征;其次,构建XGBoost模型作为城市公共交通枢纽客流量预测模型,利用差分进化算法迭代寻优模型参数;最后,将数据特征输入至训练后XGBoost模型中,实现城市公共交通枢纽客流量预测。实验结果表明:本文方法RMSE和MAPE更低,预测所用时间更少。

关键词: 实时数据特征, 客流量预测, 自动编码器, XGBoost算法, 差分进化算法

Abstract:

Aiming at the randomness and correlation of passenger flow in urban public transportation hubs, a real-time data feature and XGBoost algorithm based passenger flow prediction for urban public transportation hubs is proposed. Firstly, the automatic encoder is optimized using the AdamOptimizer algorithm, and the real-time passenger flow data feature matrix of urban public transportation hubs is inputted into the optimized automatic encoder to extract data features, Then, an XGBoost model is constructed as the passenger flow prediction model for urban public transportation hubs. Differential evolution algorithm is used to iteratively optimize the model parameters, and the data features are input into the trained XGBoost model to achieve passenger flow prediction for urban public transportation hubs. The experimental results show that the proposed methods have lower RMSE and MAPE, and require less prediction time.

Key words: real time data features, passenger flow forecast, automatic encoder, xgboost algorithm, differential evolution algorithm

中图分类号: 

  • U293.13

图1

城市公共交通枢纽客流量预测模型训练过程"

图2

各方法预测结果均方根误差对比"

图3

各方法预测结果平均绝对百分比误差对比"

表1

各方法预测所用时间对比"

方法预测时间/s
本文0.18
文献[42.05
文献[51.29
1 刘向阳. 城市轨道交通枢纽治理: 理论框架与运作模式[J]. 中国铁道科学, 2022, 43(5): 188-198.
Liu Xiang-yang. Governance of urban rail transit hub: theoretical framework and operational mode[J]. China Railway Science, 2022, 43(5): 188-198.
2 何景师, 陈晓忠, 脱俗. 城市轨道交通应急能力影响因素及评价研究[J]. 城市轨道交通研究, 2021, 24(12): 71-76.
He Jing-shi, Chen Xiao-zhong, Su Tuo. Research on the influencing factors and evaluation of urban rail transit emergency capability[J]. Urban Mass Transit, 2021, 24(12): 71-76.
3 张文娟, 杨皓哲, 张彬, 等. 考虑多时间尺度特征的城市轨道交通短时客流量预测模型[J]. 交通运输系统工程与信息, 2022, 22(6): 212-223.
Zhang Wen-juan, Yang Hao-zhe, Zhang Bin, et al. Short-time passenger flow prediction model of urban rail transit considering multi-timescale features[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(6): 212-223.
4 帅春燕, 谢亚威, 单君, 等. 基于SSA-SVR模型的城市轨道交通短时进站客流预测[J]. 都市快轨交通, 2022, 35(5): 76-83.
Chun-yan Shuai, Xie Ya-wei, Shan Jun, et al. Prediction of short-term inbound passenger flow of urban rail transit based on the singular spectrum analysis and support vector regression model[J]. Urban Rapid Rail Transit, 2022, 35(5): 76-83.
5 赵明伟, 张文胜. 基于IPSO-LSTM组合模型的城市轨道交通短时客流预测[J]. 铁道运输与经济, 2022, 44(2): 123-130.
Zhao Ming-wei, Zhang Wen-sheng. Short-term passenger flow prediction of urban rail transit based on IPSO-LSTM combined model[J]. Railway Transport and Economy, 2022, 44(2): 123-130.
6 韩云飞, 谢佳, 蔡涛, 等. 基于自动编码器的锂离子电池状态评估方法[J]. 电力系统自动化, 2021, 45(24): 41-48.
Han Yun-fei, Xie Jia, Cai Tao, et al. Autoencoder-based state evaluation method for lithium-ion battery[J]. Automation of Electric Power Systems, 2021, 45(24): 41-48.
7 张晨旭, 李圣辰, 邵曦. 基于自编码器的无监督机器异常声检测[J]. 复旦学报: 自然科学版, 2021, 60(3): 297-302.
Zhang Chen-xu, Li Sheng-chen, Shao Xi. Unsupervised detection of anomalous sounds for machine based on auto-encoder[J]. Journal of Fudan University (Natural Science Edition), 2021, 60(3): 297-302.
8 林钰棽, 魏云龙, 陈琪琪, 等. 一种嵌入式计算平台的Sigmoid函数优化方法[J]. 小型微型计算机系统, 2021, 42(10): 2053-2058.
Lin Yu-chen, Wei Yun-long, Chen Qi-qi, et al. A Sigmoid function optimization method for embedded computing platform[J]. Journal of Chinese Computer Systems, 2021, 42(10): 2053-2058.
9 徐文英, 王大军, 卢朝阳, 等. 基于XGBoost算法的终端区进场航空器飞行时间预测[J]. 北京交通大学学报, 2022, 46(6): 72-79.
Xu Wen-ying, Wang Da-jun, Lu Chao-yang, et al. Flight time prediction for aircraft approaching terminal area based on XGBoost algorithm[J]. Journal of Beijing Jiaotong University, 2022, 46(6): 72-79.
10 张照贝, 顾春华, 温蜜. 基于XGBoost和QRLSTM的超短期负荷预测方法[J]. 计算机仿真, 2022, 39(1): 90-95.
Zhang Zhao-bei, Gu Chun-hua, Wen Mi. Ultra-short-term load forecasting method based on XGBoost and QRLSTM[J]. Computer Simulation, 2022, 39(1): 90-95.
11 孙梦婷, 魏海平, 李星滢, 等. 利用CART分类树分类检测交通拥堵点[J]. 武汉大学学报: 信息科学版, 2022, 47(5): 683-692.
Sun Meng-ting, Wei Hai-ping, Li Xing-ying, et al. Using CART classification tree to detect traffic congestion points[J]. Journal of Wuhan University (Information Science Edition), 2022, 47(5): 683-692.
12 樊攀云, 李敏. 基于自适应正则项的非均匀B样条肺部图像配准[J]. 激光与光电子学进展, 2022, 59(10): 189-198.
Fan Pan-yun, Li Min. Nonuniform B-spline lung image registration based on adaptive regularization term[J]. Laser and Optoelectronics Progress, 2022, 59(10): 189-198.
13 汤世昕, 沈育静, 陈纪康, 等. 改进螺旋桨敞水性能预报的泰勒展开边界元法[J]. 哈尔滨工程大学学报, 2022, 43(7): 928-935.
Tang Shi-xin, Shen Yu-jing, Chen Ji-kang, et al. Taylor expansion boundary element method for propeller steady hydrodynamic performance prediction[J]. Journal of Harbin Engineering University, 2022, 43(7): 928-935.
14 曹义亲, 刘龙标, 何恬, 等. 基于贪心选择及斜率探测扩充的轨面提取方法[J]. 计算机科学与探索, 2022, 16(1): 205-216.
Cao Yi-qin, Liu Long-biao, He Tian, et al. Method of rail surface extraction based on greedy selection and slope detection expansion[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 205-216.
15 吴桂芳, 崔勇, 刘宏, 等. 基于差分进化算法的三维电场传感器解耦标定方法[J]. 电工技术学报, 2021, 36(19): 3993-4001.
Wu Gui-fang, Cui Yong, Liu Hong, et al. Decoupling calibration method for three-dimensional electric field sensors based on differential evolution algorithm[J]. Journal of Electrical Engineering Technology, 2021, 36(19): 3993-4001.
[1] 闫云娟,查伟雄,石俊刚,严丽平. 基于随机充电需求的充电桩优化双层模型[J]. 吉林大学学报(工学版), 2024, 54(8): 2238-2244.
[2] 阎奇武,邹忠亮. 减震结构阻尼器优化布置混合算法[J]. 吉林大学学报(工学版), 2024, 54(8): 2267-2274.
[3] 刘兴涛,刘晓剑,武骥,何耀,刘新天. 基于曲线压缩和极限梯度提升算法的锂离子电池健康状态估计[J]. 吉林大学学报(工学版), 2022, 52(6): 1273-1280.
[4] 张根保,李浩,冉琰,李裘进. 一种用于轴承故障诊断的迁移学习模型[J]. 吉林大学学报(工学版), 2020, 50(5): 1617-1626.
[5] 李志军,杨楚皙,刘丹,孙大洋. 基于深度卷积神经网络的信息流增强图像压缩方法[J]. 吉林大学学报(工学版), 2020, 50(5): 1788-1795.
[6] 周炳海,何朝旭. 基于线边集成超市的混流装配线动态物料配送调度[J]. 吉林大学学报(工学版), 2020, 50(5): 1809-1817.
[7] 胡冠宇, 乔佩利. 基于云群的高维差分进化算法及其在网络安全态势预测上的应用[J]. 吉林大学学报(工学版), 2016, 46(2): 568-577.
[8] 孔英秀, 赵丁选, 杨彬, 李天宇, 韩京元. 基于PSO-DE和LMI的鲁棒静态输出反馈控制[J]. 吉林大学学报(工学版), 2013, 43(05): 1375-1380.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!