吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (5): 1742-1748.doi: 10.13229/j.cnki.jdxbgxb.20240459
摘要:
针对高光谱图像的光谱分辨率非常高,且包含的地物种类波段较多,使目标与背景之间的光谱差异非常微小,容易造成光谱混淆,使目标检测的准确度较低的问题,提出基于改进YOLOv5s算法的图像目标检测方法。建立特征金字塔并实行多尺度加权,利用特征金字塔中不同层间的权重,对特征加权融合,并将其引入注意力机制中,输出空间注意力机制光谱特征,将该特征值作为对比参照,对通道重新加权分配,获取通道注意力机制输出的光谱特征,将两个光谱特征维度相乘,得到校准后的高光谱图像特征,将其作为改进YOLOv5s算法的输入,有效区分图像中的微小光谱特征差异,避免光谱混淆,根据中心值计算检测框与真实框重叠区域,完成目标检测,保证检测精准度。实验证明:本文方法对高光谱遥感图像中的地物检测精准度较高,在检测1 057 p像素大小的图像时,帧率高达60 fps,综合性能表现优异。
中图分类号:
| [1] | 汪西莉, 梁敏, 刘涛. 特征增强的单阶段遥感图像目标检测模型[J]. 西安电子科技大学学报, 2022, 49(3): 160-170. |
| Wang Xi-li, Liang Min, Liu Tao. Feature enhanced single-stage remote sensing image object detection model[J].Journal of Xidian University,2022,49(3):160-170. | |
| [2] | 单慧琳, 王硕洋, 童俊毅, 等. 增强小目标特征的多尺度光学遥感图像目标检测[J]. 光学学报, 2024, 44(6): 0628006. |
| Shan Hui-lin, Wang Shuo-yang, Tong Jun-yi, et al.Object detection in multi-scale optical remote sensing images to enhance the characteristics of small targets[J].Acta Optica Sinica, 2024, 44(6): 0628006. | |
| [3] | 王艳辉, 张福泉, 邹静, 等. 基于改进卷积神经网络的遥感图像目标检测方法[J]. 南京理工大学学报, 2023, 47(3): 330-336. |
| Wang Yan-hui, Zhang Fu-quan, Zou Jing, et al. Method of remote sensing image target detection based on improved convolution neural network[J]. Journal of Nanjing University of Science and Technology,2023,47(3):330-336. | |
| [4] | Liang Z, Zhu B, Zhu Y X. High resolution representation-based Siamese network for remote sensing image change detection[J]. IET Image Processing,2022,16(9):2506-2517. |
| [5] | 钱晓亮, 曾银凤, 林生, 等. 融合自适应窗口显著性检测和改进超像素分割的高光谱异常检测[J]. 遥感学报, 2023, 27(12): 2748-2761. |
| Qian Xiao-liang, Zeng Yin-feng, Lin Sheng, et al. Hyperspectral anomaly detection via combining adaptive window saliencydetection and improved superpixel segmentation[J]. Journal of Remote Sensing,2023,27(12):2748-2761. | |
| [6] | 刘洋, 张国军. 基于NSCT及RT的遥感图像阴影消除方法[J]. 计算机仿真, 2022,39(5): 465-469. |
| Liu Yang, Zhang Guo-jun. Remote sensing image shadow elimination method based on nsct and retinex theory(RT)[J]. ComputerSimulation,2022,39(5):465-469. | |
| [7] | Hao F, Ma Z F, Tian H P, et al. Semi-supervised label propagation for multi-source remote sensing image change detection[J].Computers & Geosciences, 2023,170(1):1052491. |
| [8] | 姚婷婷, 李鹏飞, 高源, 等. 基于感知增强无锚框网络的遥感图像目标检测[J]. 中国科技论文, 2023, 18(11): 1178-1185. |
| Yao Ting-ting, Li Peng-fei, Gao Yuan, et al. Object detection based on perception enhanced anchor-free network for remote sensing images[J]. China Sciencepaper,2023,18(11):1178-1185. | |
| [9] | Yang N, Chang K P, Dong S Z, et al. Rapid image detection and recognition of rice false smut based on mobile smart devices with anti-light features from cloud database[J].Biosystems Engineering,2022,218:229-244. |
| [10] | 吴琪, 樊彦国, 樊博文, 等.基于图正则化低秩协同表示的高光谱异常检测[J]. 激光与光电子学进展,2022,59(12):467-475. |
| Wu Qi, Fan Yan-guo, Fan Bo-wen, et al. Graph regularized low-rank and collaborative representation for hyperspectral anomaly detection[J]. Laser & Optoelectronics Progress,2022,59(12):467-475. | |
| [11] | 熊娟, 张孙杰, 阚亚亚, 等.基于CAFPN和细化双头解耦的遥感图像目标检测[J]. 应用科学学报, 2023, 41(6): 989-1003. |
| Xiong Juan, Zhang Sun-jie, Kan Ya-ya, et al. Remote sensing image object detection based on cafpn and refinement double-head decoupling[J]. Journal of Applied Sciences,2023,41(6):989-1003. | |
| [12] | 成倩, 李佳, 杜娟. 基于YOLOv5的光学遥感图像舰船目标检测算法[J]. 系统工程与电子技术, 2023, 45(5): 1270-1276. |
| Cheng Qian, Li Jia, Du Juan. Ship target detection algorithm of optical remote sensing image based on YOLOv5[J]. Systems Engineering and Electronics,2023, 45(5): 1270-1276. | |
| [13] | Mahanti N K, Pandiselvam R, Kothakota A, et al. Emerging non-destructive imaging techniques for fruit damage detection: image processing and analysis[J].Trends in Food Science & Technology, 2022, 120: 418-438. |
| [14] | 李强, 武文波, 何明一. 基于MPSoC的遥感图像目标检测算法硬件加速研究[J]. 航天返回与遥感, 2022, 43(1): 58-68. |
| Li Qiang, Wu Wen-bo, He Ming-yi. Accelerator of remote sensing image object detection based on MPSoC[J]. Spacecraft Recovery & Remote Sensing,2022,43(1):58-68. | |
| [15] | Wang P K, Wu L, Qi J X, et al. Unmanned aerial vehicles object detection based on image haze removal under sea fog conditions[J]. IET Image Pcessing,2022,16(10):2709-2721. |
| [16] | Camacho I C, Wang K. Convolutional neural network initialization approaches for image manipulation detection[J]. Digital Signal Processing, 2022, 122: 103376. |
| [17] | Geet L, Chitta R J, Chen J L, et al. Convolutional neural network-assisted adaptive sampling for sparse feature detection in image and video data[J]. IEEE Intelligent Systems, 2023, 38(1): 45-57. |
| [18] | 顾勇翔, 蓝鑫, 伏博毅, 等. 基于几何适应与全局感知的遥感图像目标检测算法[J]. 计算机应用, 2023, 43(3): 916-922. |
| Gu Yong-xiang, Lan Xin, Fu Bo-yi, et al. Object detection algorithm for remote sensing images based on geometric adaptation and global perception[J]. Journal of Computer Applications, 2023, 43(3):916-922. | |
| [19] | Du X J, Wu H L. Feature-aware aggregation network for remote sensing image cloud detection[J].International Journal of Remote Sensing, 2023, 44(5):1872-1899. |
| [20] | Xu D Y, Yang H, Xu W H, et al.Inverse design of pancharatnam-berry phase metasurfaces for all-optical image edge detection[J]. Applied Physics Letters,2022, 120(24): 2411011. |
| [1] | 才华,郑延阳,付强,王晟宇,王伟刚,马智勇. 基于多尺度候选融合与优化的三维目标检测算法[J]. 吉林大学学报(工学版), 2025, 55(2): 709-721. |
| [2] | 郑利民,陈双,李刚. YOLOv5网络算法下交通监控视频违章车辆多目标检测[J]. 吉林大学学报(工学版), 2025, 55(2): 693-699. |
| [3] | 徐慧智,蒋时森,王秀青,陈爽. 基于深度学习的车载图像车辆目标检测和测距[J]. 吉林大学学报(工学版), 2025, 55(1): 185-197. |
| [4] | 王宏志,宋明轩,程超,解东旋. 基于改进YOLOv5算法的道路目标检测方法[J]. 吉林大学学报(工学版), 2024, 54(9): 2658-2667. |
| [5] | 杨军,韩鹏飞. 采用神经网络架构搜索的高分辨率遥感影像目标检测[J]. 吉林大学学报(工学版), 2024, 54(9): 2646-2657. |
| [6] | 郭昕刚,程超,沈紫琪. 基于卷积网络注意力机制的人脸表情识别[J]. 吉林大学学报(工学版), 2024, 54(8): 2319-2328. |
| [7] | 朱圣杰,王宣,徐芳,彭佳琦,王远超. 机载广域遥感图像的尺度归一化目标检测方法[J]. 吉林大学学报(工学版), 2024, 54(8): 2329-2337. |
| [8] | 游新冬,郭磊,韩晶,吕学强. 一种工件表面压印字符识别网络[J]. 吉林大学学报(工学版), 2024, 54(7): 2072-2079. |
| [9] | 高云龙,任明,吴川,高文. 基于注意力机制改进的无锚框舰船检测模型[J]. 吉林大学学报(工学版), 2024, 54(5): 1407-1416. |
| [10] | 陈仁祥,胡超超,胡小林,杨黎霞,张军,何家乐. 基于改进YOLOv5的驾驶员分心驾驶检测[J]. 吉林大学学报(工学版), 2024, 54(4): 959-968. |
| [11] | 张云佐,郭威,李文博. 遥感图像密集小目标全方位精准检测算法[J]. 吉林大学学报(工学版), 2024, 54(4): 1105-1113. |
| [12] | 王宏志,宋明轩,程超,解东旋. 基于改进YOLOv4-tiny算法的车距预警方法[J]. 吉林大学学报(工学版), 2024, 54(3): 741-748. |
| [13] | 程鑫,刘升贤,周经美,周洲,赵祥模. 融合密集连接和高斯距离的三维目标检测算法[J]. 吉林大学学报(工学版), 2024, 54(12): 3589-3600. |
| [14] | 孙文财,胡旭歌,杨志发,孟繁雨,孙微. 融合GPNet与图像多尺度特性的红外-可见光道路目标检测优化方法[J]. 吉林大学学报(工学版), 2024, 54(10): 2799-2806. |
| [15] | 王春华,李恩泽,肖敏. 多特征融合和孪生注意力网络的高分辨率遥感图像目标检测[J]. 吉林大学学报(工学版), 2024, 54(1): 240-250. |
|