吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (4): 1258-1265.doi: 10.13229/j.cnki.jdxbgxb.20240756

• 交通运输工程·土木工程 • 上一篇    下一篇

基于改进YOLO算法的地铁车厢客流检测方法

郭宁1,2(),胡小晨1,2,董德存1()   

  1. 1.同济大学 道路与交通工程教育部重点实验室,上海 201804
    2.同济大学 上海市轨道交通结构耐久与系统安全重点实验室,上海 201804
  • 收稿日期:2024-06-12 出版日期:2025-04-01 发布日期:2025-06-19
  • 通讯作者: 董德存 E-mail:13273031888@163.com;1710910@tongji.edu.cn
  • 作者简介:郭宁(1994-),男,博士研究生.研究方向:基于图像处理和深度学习的铁路交通智能运维.E-mail: 13273031888@163.com
  • 基金资助:
    中国-东盟综合交通国际联合实验室建设项目(桂科AD20297125)

Passenger flow detection method of subway car based on improved YOLO algorithm

Ning GUO1,2(),Xiao-chen HU1,2,De-cun DONG1()   

  1. 1.Key Laboratory of Road and Traffic Engineering,Ministry of Education,Tongji University,Shanghai 201804,China
    2.Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety,Tongji University,Shanghai 201804,China
  • Received:2024-06-12 Online:2025-04-01 Published:2025-06-19
  • Contact: De-cun DONG E-mail:13273031888@163.com;1710910@tongji.edu.cn

摘要:

在高峰时段,地铁车厢的客流量剧增,人群密集和目标遮挡等复杂场景导致传统方法难以准确识别每一个乘客,容易导致漏检或误检。针对此问题,提出了基于改进YOLO算法的地铁车厢客流检测方法。分析YOLOv8模型结构后,将ASF-YOLO中的TFE模块加入YOLOv8n中,结合时空模型,考虑到站时乘客流动大和行驶时乘客活动少的特点,及车门和车厢内乘客的不同流动特性,将多帧检测结果相融合,实现了对地铁车厢内乘客流量的精准检测。经实验比较:原始YOLOv8n模型平均精度为57.0%,改进后的模型为69.1%,多帧融合处理后为76.6%。基于该模型所得到的客流信息可用于乘客出行引导、应急救援、铁路运营管控等场景。

关键词: 地铁车厢, YOLOv8模型, 客流检测, 时空模型

Abstract:

During peak hours, the passenger flow of subway carriages increases sharply. In complex scenarios such as dense crowds and target occlusion, it is difficult to accurately identify each passenger, which can easily lead to missed or false detections. To this end, a subway carriage passenger flow detection method based on the improved YOLO algorithm is proposed. After analyzing the YOLOv8 model structure, the TFE module from ASF-YOLO was added to YOLOv8n. Combined with the spatiotemporal model, the characteristics of high passenger flow at stations and low passenger activity during driving, as well as the different flow characteristics of passengers in train doors and carriages, were considered. The multi frame detection results were fused to achieve accurate detection of passenger flow in subway carriages. Through experimental comparison, the average accuracy of the original YOLOv8n model is 57.0%, the improved model is 69.1%, and after multi frame fusion processing, it is 76.6%. The passenger flow information obtained based on this model supports multiple aspects such as passenger travel guidance, emergency rescue support, and railway operation control.

Key words: metro car, YOLOv8 model, passenger flow detection, spatial-temporal model

中图分类号: 

  • U293

图1

YOLOv8网络结构"

图2

TFE模块结构"

图3

车厢空间模型图"

图4

时间分割模型图"

图5

优化YOLO算法的多帧融合客流分析流程图"

图6

车厢视频单帧图片示例"

图7

检测结果示例"

图8

非出行高峰期客流检测结果"

图9

出行高峰期到站时期客流检测结果"

图10

出行高峰期行驶时期客流检测结果"

1 Aguilera V, Allio S, Benezech V,et al.Using cell phone data to measure quality of service and passenger flows of Paris transit system[J].Transportation Research Part C: Emerging Technologies, 2014, 43(1):198-211.
2 Zhong G, Wan X, Zhang J,et al.Characterizing passenger flow for a transportation hub based on mobile phone data[J].IEEE Transactions on Intelligent Transportation Systems, 2016, 18(6): 1507-1518.
3 Niu Q, Wu H F, Gao C Y, et al. Laser-based bidirectional pedestrian counting via height map guided regression and voting[J]. Signal, Image and Video Processing, 2017, 11(5): 897-904.
4 余燕. 基于红外CCD与激光测距仪融合的行人检测技术研究[D]. 长春: 吉林大学电子科学与工程学院, 2008.
Yu Yan. Study on the pedestrian detection technology based on the information fusion of infrared CCD and laser measurement system[D]. Changchun: College of Electronic Science and Engineering, Jilin University, 2008.
5 王连震, 王晖, 罗孟德. 基于压力传感器的出租车客流检测系统[J]. 交通科技与经济, 2018, 20(5): 29-31.
Wang Lian-zhen, Wang Hui, Luo Meng-de. A detection system of taxi passenger flow based on pressure sensor[J] Technology & Economy in Areas of Communications, 2018, 20(5): 29-31.
6 Sidenbladh H, Black M J. Learning image statistics for Bayesian tracking[C]∥Proceedings Eighth IEEE International Conference on Computer Vision, Vancouver: Canada, 2001: 709-716.
7 方晨晨, 周继彪, 董升, 等. 基于BP神经网络的地铁车厢拥挤度预测方法[J]. 交通信息与安全, 2018, 36(6): 47-53.
Fang Chen-chen, Zhou Ji-biao, Dong Sheng, et al. A method of forecast congestion of subway carriages based on BP neural network[J]. Journal of Transport Information and Safety, 2018,36(6): 47-53.
8 杨谱. 基于视频图像处理的地铁站拥挤风险预测与人群疏散[D]. 北京: 北京交通大学机械与电子控制工程学院学院, 2018.
Yang Pu. Risk prediction and crowd evacuation of subway station congestion based on video image processing[D]. Beijing: School of Mechanical,Electronic and Control Engineering, Beijing Jiaotong University, 2018.
9 谈世磊, 别雄波, 卢功林, 等. 基于YOLOv5网络模型的人员口罩佩戴实时检测[J]. 激光杂志, 2021, 42(2): 147-150.
Tan Shi-lei, Bie Xiong-bo, Lu Gong-lin, et al. Real time detection of personnel mask wearing based on YOLOv5 network model[J]. Laser Journal, 2021, 42 (2): 147-150.
10 Gao C Q, Li P, Zhang Y J, et al. People counting based on head detection combining Adaboost and CNN in crowded surveillance environment[J]. Neurocomputing, 2016(208): 108-116.
11 Song D, Qiao Y, Corbetta A. Depth driven people counting using deep region proposal network[C]∥IEEE International Conference on Information and Automation(ICIA), Macau,China, 2017: 416-421.
12 Alqahtani F, Banks J, Chandran V,et al.Investigating the efficiency of a three-dimensional facial tracker using stereo camera arrangements[C]∥International Conference on Artificial Intelligence and Big Data,Chengdu,China, 2021: 463-468.
13 Tran C K.Face recognition based on similarity feature-based selection and classification algorithms and wrapper model[J].EJournal Publishing, 2019(3):357-362.
14 Shen G, Jamshidi F, Dong D, et al. Metro pedestrian detection based on mask R-CNN and spatial-temporal feature[C]∥IEEE 3rd International Conference on Information Communication and Signal Processing (ICICSP),Shanghai,China, 2020: 173-178.
15 邱芳, 李玉峰, 孔才华. 基于YOLOv5m和注意力机制融合的地铁车厢乘客实时检测[J]. 微处理机, 2022, 43(6): 53-58.
Qiu Fang, Li Yu-feng, Kong Cai-hua. Real-time detection of passengers in subway carriages based on the fusion of YOLOv5m and attention mechanism[J]. Microprocessors, 2022, 43(6): 53-58.
16 Lin S D, Zhu K X, Chen F,et al.Align-Yolact: a one-stage semantic segmentation network for real-time object detection[J].Journal of Ambient Intelligence and Humanized Computing, 2023,14(2):863-870.
17 张馨, 董承梁, 汪晓臣, 等.基于改进YOLOv5s的列车车厢客流密度检测方法研究[J]. 铁路计算机应用, 2022, 31(10): 10-16.
Zhang Xin, Dong Cheng-liang, Wang Xiao-chen, et al. Detection method of passenger flow density in train carriage based on improved YOLOv5s[J]. Railway Computer Application, 2022, 31(10): 10-16.
18 周飞, 郭杜杜, 王洋, 等. 基于改进YOLOv8的交通监控车辆检测算法[J]. 计算机工程与应用, 2024, 60(6): 110-120.
Zhou Fei, Guo Du-du, Wang Yang, et al. Vehicle detection algorithm based on improved YOLOv8 in traffic surveillance[J]. Computer Engineering and Applications,2024,60(6): 110-120.
19 葛雯, 姜添元. 改进YOLO与Deepsort检测跟踪算法的研究[J]. 计算机仿真, 2022, 39(5): 186-190.
Ge Wen, Jiang Tian-yuan. Research on improved YOLO and deepsort detection and tracking algorithms[J].Computer Simulation, 2022, 39(5): 186-190.
[1] 雷爱国,胡启洲,吴啸宇,曲思源. 不完全信息下高铁晚点与乘客选择行为博弈模型[J]. 吉林大学学报(工学版), 2024, 54(12): 3496-3504.
[2] 姚明辉,王威超,吴启亮,牛燕. 基于实时数据特征和XGBoost算法的城市公共交通枢纽客流量预测[J]. 吉林大学学报(工学版), 2024, 54(11): 3302-3308.
[3] 赖晴鹰,刘军,赵若愚,骆泳吉,孟令云,徐亚之. 基于变间距动态规划的中高速磁悬浮列车 速度曲线优化[J]. 吉林大学学报(工学版), 2019, 49(3): 749-756.
[4] 孟品超, 李学源, 贾洪飞, 李延忠. 基于滑动平均法的轨道交通短时客流实时预测[J]. 吉林大学学报(工学版), 2018, 48(2): 448-453.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[5] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[7] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[8] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[9] .

吉林大学学报(工学版)2007年第4期目录

[J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .