吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (4): 1297-1303.doi: 10.13229/j.cnki.jdxbgxb201504039

• • 上一篇    下一篇

基于随机共振和MIMO技术的协方差矩阵频谱感知算法

赵晓晖, 李晓燕   

  1. 吉林大学 通信工程学院,长春 130012
  • 收稿日期:2013-06-17 出版日期:2015-07-01 发布日期:2015-07-01
  • 作者简介:赵晓晖(1957-),男,教授,博士生导师.研究方向:信号处理理论在通信中的应用.E-mail:xhzhao@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目 (61171079)

Covariance matrix spectrum sensing algorithm based on stochastic resonance and MIMO technology

ZHAO Xiao-hui, LI Xiao-yan   

  1. College of Communication Engineering, Jilin University, Changchun 130012,China
  • Received:2013-06-17 Online:2015-07-01 Published:2015-07-01

摘要: 在认知无线电系统中,为了使认知用户可以在低信噪比和衰落信道的条件下实现可靠的频谱感知,提出了基于随机共振和MIMO的协方差矩阵频谱感知算法。该算法将随机共振和MIMO技术用于协方差矩阵频谱感知,同时还给出了判决门限的计算方法。仿真实验结果表明:与不使用随机共振和MIMO技术的频谱感知算法相比,本文算法具有更高的检测性能;并且当天线数足够多时,该算法可以在很低信噪比情况下实现可靠的频谱感知。

关键词: 通信技术, 频谱感知, 随机共振, MIMO技术, 协方差矩阵

Abstract: In order to achieve reliable spectrum sensing by users under the condition of low Signal-to-Noise Ratio (SNR) and fading channel in cognitive radio systems, a new covariance matrix spectrum sensing algorithm based on stochastic resonance and Multi-input-Multi-output (MIMO) technology is proposed; and the calculation method of the decision threshold is derived. Simulations show that the performance of the proposed algorithm is batter than the algorithm without introduction of the stochastic resonance and MIMO technology. When the number of antennae is large enough, the proposed method can achieve good performance at low SNR.

Key words: communications, spectrum sensing, stochastic resonance, MIMO technology, covariance matrix

中图分类号: 

  • TN929
[1] Mitola J, Magutre G Q. Cognitive radio: making software radios more personal[J]. IEEE Personal Communications, 1999, 6(4):13-17.
[2] Mitola J. Cognitive radio: an intergrated agent architecture for software defined radio[D]. Kista Sweden: Royal Institute of Technology, 2000.
[3] McNamara B, Wilesenfeld K. Theory of stochastic resonance[J]. Phys Rev A, 1989, 39(9): 4854-4869.
[4] Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance[J]. J Phys A: Math Gen, 1981, 14(11): 453-457.
[5] Gammaitoni L, Hanggi P, Jung P, et al. Stochastic resonace[J]. Reviews of Modern Physics, 1998, 70(1):223-287.
[6] He D, Li W H, Zhu F S, et al. An enhanced covariance spectrum sensing technique based on stochastic resonance in cognitive radio networks[C]∥IEEE International Symposium on Circuits and Systems (ISCAS), Seoul, 2012: 818-821.
[7] He D, Lin Y P, He C, et al. A novel spectrum-sensing techique in cognitive radio based on stochastic resonance[J]. IEEE Transactions on Vehicular Technology, 2010, 59(4):1680-1688.
[8] Chen W, Wang J, Li H S, et al. Stochastic resonance noise enhanced spectrum sensing in cognitive radio networks[C]∥IEEE Global Telecommunications Conference (GLOBECOM),Miami,2010.
[9] Zheng K, Li H S, Djouadi S M, et al. Spectrum sensing in low snr regime via stochastic resonance[C]∥The 44th Annual Conference on Information Sciences and Systems (CISS), Princeton, 2010.
[10] Mietzner J, Schober R, Lampe L, et al. Multiple-antenna techniques for wireless communications—a comprehensive literature survey[J]. IEEE Communications Surveys and Tutorials, 2009, 11(2):87-105.
[11] Zeng Y H, Liang Y C. Eigenvalue-based spectrum sensing algorithms for cognitive radio[J]. IEEE Transactions on Communications, 2009, 57(6): 1784-1793.
[12] Soltanmohammadi E M, Orooji M, Naraghi-Pour M. Spectrum sensing over MIMO channels using generalized likelihood ratio tests[J]. IEEE Signal Processing Letters, 2013, 20(5):439-442.
[13] Zeng Y H, Liang Y C. Spectrum-sensing algorithms for cognitive radio based on statistical covariances[J]. IEEE Transactions on Vehicular Technology, 2009, 58(4):1804-1815.
[14] Wang G F, Zhang H R, Zhang F Q, et al. Scale transformation for detecting weak periodic signal of stochastic resonance[C]∥International Conference on Intelligent Computing and Integrated Systems (ICISS),Guilin, China,2010.
[15] Wang J H, Xiao Q, Li X. The high-frequency weak signal detection based on stochastic resonance[C]∥International Conference on Test and Measurement, Hong Kong, 2009.
[16] 冷永刚, 王太勇. 二次采样用于随机共振从强噪声中提取弱信号的数值研究[J]. 物理学报,2003,52(10): 2432-2437. Leng Yong-gang, Wang Tai-yong. Numerical research of twice sampling stochastic resonance for the detection of a weak signal submerged in a heavy noise[J]. Acta Physica Sinica, 2003, 52(10):2432-2437.
[17] Anishchenko V S, Astakhov V, Neiman A, et al. Nonlinear Dynamics of Chaotic and Stochastic Systems[M]. Berlin: Springer-Verlag, 2002.
[18] 冷永刚,王太勇,郭焱. 级联双稳定系统的随机共振特性[J].物理学报, 2005, 54(3): 1118-1125. Leng Yong-gang, Wang Tai-yong, Guo Yan. Stochastic resonance behaviors of bistable systems connected in series[J]. Acta Physica Sinica, 2005, 54(3):1118-1125.
[1] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[2] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[3] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[4] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[5] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[6] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[7] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[8] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[9] 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[10] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[11] 武伟, 王世刚, 赵岩, 韦健, 钟诚. 蜂窝式立体元图像阵列的生成[J]. 吉林大学学报(工学版), 2018, 48(1): 290-294.
[12] 袁建国, 张锡若, 邱飘玉, 王永, 庞宇, 林金朝. OFDM系统中利用循环前缀的非迭代相位噪声抑制算法[J]. 吉林大学学报(工学版), 2018, 48(1): 295-300.
[13] 王金鹏, 曹帆, 贺晓阳, 邹念育. 基于多址干扰和蜂窝间互扰分布的多载波系统联合接收方法[J]. 吉林大学学报(工学版), 2018, 48(1): 301-305.
[14] 石文孝, 孙浩然, 王少博. 无线Mesh网络信道分配与路由度量联合优化算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1918-1925.
[15] 姜来为, 沙学军, 吴宣利, 张乃通. LTE-A异构网络中新的用户选择接入和资源分配联合方法[J]. 吉林大学学报(工学版), 2017, 47(6): 1926-1932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!