吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (6): 1933-1940.doi: 10.13229/j.cnki.jdxbgxb201506029

• • 上一篇    下一篇

基于向量的鲁棒分数阶比例微分控制器参数求解算法

王春阳, 蔡年春, 李明秋, 刘雪莲   

  1. 长春理工大学 电子信息工程学院,长春 130022
  • 收稿日期:2014-04-17 出版日期:2015-11-01 发布日期:2015-11-01
  • 作者简介:王春阳(1964-),女,教授,博士生导师.研究方向:鲁棒分数阶控制器.E-mail:wangchunyang19@cust.edu.cn
  • 基金资助:
    吉林省科技发展计划项目(20130102025JC)

Robust fractional order proportional differential controller parameters algorithm based on phasor

WANG Chun-yang, CAI Nian-chun, LI Ming-qiu, LIU Xue-lian   

  1. School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China
  • Received:2014-04-17 Online:2015-11-01 Published:2015-11-01

摘要: 以分数阶比例微分(FOPD)控制器为例,详细地论述了基于向量的鲁棒FOPD控制器参数求解过程,证明了该方法求解的控制器参数具有唯一性,并编写了基于MATLAB环境下FOPD控制器参数求解算法程序,实现了面向不同相位裕度、不同穿越频率以及不同被控对象的鲁棒FOPD控制器系统校正。结果表明,本文算法不仅简化了控制器参数求解过程,减少了计算量,而且求得的控制器参数唯一且有效。

关键词: 人工智能, 控制理论, 鲁棒分数阶控制器, 分数阶比例微分, 参数求解

Abstract: Using an example of Fractional Order Proportional Differential (FOPD) controller, the parameter calculation procedure of the robust FOPD controller based on phasor method is discussed in detail. It is proved that the calculated controller parameters based on phasor method are unique. Besides, the proposed algorithm is programmed in Matlab. According to Matlab programs, the FOPD controller parameters solution algorithm and the FOPD controller are respectively designed for the systems compensation following the different given phase margin, different given gain crossover frequency and different given controlled objects. This study results show that not only the parameter calculation procedure of fractional order controllers is simplified and the amount of calculation is reduced, but also the calculated controller parameters are unique and valid.

Key words: artificial intelligence, control theory, robust fractional order controller, fractional order proportional derivative(FOPD), parameter calculation

中图分类号: 

  • TP13
[1] 金永顺. 面向鲁棒运动控制系统的分数阶PID控制器设计、自整定及实验研究[D]. 长沙:湖南大学电气与信息工程学院,2011.
Jin Yong-shun, Fractional order PID controller synthesis, auto-tuning and experiment studies for robust motion control systems[D]. Changsha:College of Electrical and Information Engineering,Hunan University, 2011.
[2] Chen Y Q,Dou H F,Vinagre B M,et al.A robust tuning method for fractional order PI controllers[DB/OL].[2014-03-26]. http://mechatronics.ece.usu.edu/yqchen/paper/06C11_We-AE-1_1FDA06082.pdf.
[3] Chen Y Q, Ahn H S, Igor P. Robust stability check of fractional order linear time invariant systems with interval uncertainties[J]. Signal Processing,2006,86(10):2611-2618.
[4] Chen Yang-quan, Ahn Hyo-sung, Xue Ding-yü. Robust controllability of interval fractional order linear time invariant systems[J]. Signal Processing,2006,86(10):2794-2802.
[5] Ahn Hyo-sung, Chen Yang-quan. Necessary and sufficient stability condition of fractional-order interval linear systems[J]. Automatica, 2008,44(11):2985-2988.
[6] Ahn Hyo-sung, Chen Yang-quan. Conservatism free robust stability check of fractional order interval linear systems[C]∥Proeeeding of the 17th IFAC World Congress, USA,2008:15256-15261.
[7] Luo Ying, Chen Yang-quan. Stabilizing and robust fractional order PI controller synthesis for first order plus time delay systems[J]. Automatica,2012,48(9):2159-2167.
[8] Luo Ying, Chen Yang-quan, Wang Chun-yang, et al. Tuning fractional order proportional integral controllers for fractional order systems[J]. Journal of Process Control,2010,20(7):823-831.
[9] Luo Ying, Li Hong-sheng, Chen Yang-quan. Fractional order proportional and derivative controller synthesis for a class of fractional order systems: Tuning rule and hardware-in-the-loop experiment[C]∥Proceedings of the 48th IEEE Conference on Decision and Control,Shanghai, China, 2009:5460-5465.
[10] Li Hong-sheng, Luo Ying, Chen Yang-quan. A fractional order proportional and derivative (FOPD) motion controller: tuning rule and experiments[J]. IEEE Transactions on Control Systems Technology, 2010,18(2):516-520.
[11] Li Hong-sheng, Chen Yang-quan. A fractional order proportional and derivative (FOPD) controller tuning algorithm[C]∥Control and Decision Conference, Yantai, Shandong, 2008: 4059-4063.
[1] 董飒, 刘大有, 欧阳若川, 朱允刚, 李丽娜. 引入二阶马尔可夫假设的逻辑回归异质性网络分类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1571-1577.
[2] 顾海军, 田雅倩, 崔莹. 基于行为语言的智能交互代理[J]. 吉林大学学报(工学版), 2018, 48(5): 1578-1585.
[3] 王旭, 欧阳继红, 陈桂芬. 基于垂直维序列动态时间规整方法的图相似度度量[J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205.
[4] 张浩, 占萌苹, 郭刘香, 李誌, 刘元宁, 张春鹤, 常浩武, 王志强. 基于高通量数据的人体外源性植物miRNA跨界调控建模[J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213.
[5] 黄岚, 纪林影, 姚刚, 翟睿峰, 白天. 面向误诊提示的疾病-症状语义网构建[J]. 吉林大学学报(工学版), 2018, 48(3): 859-865.
[6] 李雄飞, 冯婷婷, 骆实, 张小利. 基于递归神经网络的自动作曲算法[J]. 吉林大学学报(工学版), 2018, 48(3): 866-873.
[7] 刘杰, 张平, 高万夫. 基于条件相关的特征选择方法[J]. 吉林大学学报(工学版), 2018, 48(3): 874-881.
[8] 王旭, 欧阳继红, 陈桂芬. 基于多重序列所有公共子序列的启发式算法度量多图的相似度[J]. 吉林大学学报(工学版), 2018, 48(2): 526-532.
[9] 杨欣, 夏斯军, 刘冬雪, 费树岷, 胡银记. 跟踪-学习-检测框架下改进加速梯度的目标跟踪[J]. 吉林大学学报(工学版), 2018, 48(2): 533-538.
[10] 刘雪娟, 袁家斌, 许娟, 段博佳. 量子k-means算法[J]. 吉林大学学报(工学版), 2018, 48(2): 539-544.
[11] 曲慧雁, 赵伟, 秦爱红. 基于优化算子的快速碰撞检测算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1598-1603.
[12] 李嘉菲, 孙小玉. 基于谱分解的不确定数据聚类方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1604-1611.
[13] 邵克勇, 陈丰, 王婷婷, 王季驰, 周立朋. 无平衡点分数阶混沌系统全状态自适应控制[J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
[14] 王春阳, 辛瑞昊, 史红伟. 针对大滞后系统的滞后时间削弱自抗扰控制方法[J]. 吉林大学学报(工学版), 2017, 47(4): 1231-1237.
[15] 王生生, 王创峰, 谷方明. OPRA方向关系网络的时空推理[J]. 吉林大学学报(工学版), 2017, 47(4): 1238-1243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!