吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (4): 1231-1237.doi: 10.13229/j.cnki.jdxbgxb201704031

• 论文 • 上一篇    下一篇

针对大滞后系统的滞后时间削弱自抗扰控制方法

王春阳, 辛瑞昊, 史红伟   

  1. 长春理工大学 电子信息工程学院,长春 130022
  • 收稿日期:2016-05-16 出版日期:2017-07-20 发布日期:2017-07-20
  • 作者简介:王春阳(1964-),女,教授,博士生导师.研究方向:复杂运动系统高精稳定控制.E-mail:wangchunyang19@cust.edu.cn
  • 基金资助:
    吉林省发展和改革委员会项目(201410157).

Decreasing time delay auto-disturbance rejection control method for large time delay systems

WANG Chun-yang, XIN Rui-hao, SHI Hong-wei   

  1. School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun 130022,China
  • Received:2016-05-16 Online:2017-07-20 Published:2017-07-20

摘要: 针对工业中较难控制的大滞后系统,提出了一种滞后时间削弱的自抗扰控制方法,该方法首先将大滞后对象转化为小滞后对象,然后结合自抗扰控制思想对简化后的小滞后对象进行控制。本文方法解决了传统Smith预估控制等方法在被控对象模型预估不准确的情况下很难取得较好的控制效果的问题,并改善了自抗扰控制器在滞后时间较大的情况下稳定时间较长的缺点。最后将该方法与传统的PID结合Smith预估控制及自抗扰控制的控制效果进行对比。仿真结果表明,本文控制方法可以有效地改善大滞后对象的控制效果,提高了系统的动态性能和鲁棒性。

关键词: 自动控制技术, 大滞后系统, 控制理论, 自抗扰控制, 滞后时间削弱

Abstract: In this paper, a new method is proposed to control large time delay systems. First, the large lag time is transformed into small lag time through the decreasing time delay theory. Then, auto-disturbance rejection control theory is used in the transformed object to improve the performance of the system. The method can be used to solve the problem that traditional PID with Smith control method can not achieve better control effect on the inaccurate object model. The method also overcomes the shortcoming that the single auto-disturbance rejection controller has a long setting time. The control effect of this method is compared with the traditional PID with Smith control method and the single active disturbance rejection control method. Simulation results show that this method can achieve a better control effect for large time delay systems. It can effectively improve the dynamic performance and robustness of the system.

Key words: automatic control technology, large time delay systems, control theory, auto-disturbance rejection control, decreasing time delay

中图分类号: 

  • TP13
[1] 马增辉,刘长良,开平安. 基于扰动补偿的大滞后系统的控制[J]. 信息与控制, 2013, 42(5): 570-576.
Ma Zeng-hui, Liu Chang-liang, Kai Ping-an, et al. Control of dead-time systems based on disturbance compensation[J]. Information and Control, 2013, 42(5): 570-576.
[2] Ajmeri M, Ali A. Simple tuning rules for integrating processes with large time delay[J]. Asian Journal of Control, 2015, 17(5):2033-2040.
[3] Narasimhulu T, Krishna B. Design of compensator of approximation of large time delay systems via reduced order model[J]. International Journal of Engineering Sciences & Research Technology, 2013, 2(8):1934-1941.
[4] 张颖超,叶小岭,郭姝梅.串级控制与Smith预估器结构融合[J].吉林大学学报:工学版,2004,34(增刊1):270-273.
Zhang Ying-chao, Ye Xiao-ling, Guo Shu-mei.A research of serial control and Smith's predictor[J]. Journal of Jilin University(Engineering and Technology Edition),2004,34(Sup.1):270-273.
[5] Teng F C,Ledwich G F, Tsoi A C. Extension of the Dahlin-Higham controller to multivariable systems with time delays[J].Internation Journal of Systems Science,1994,25(2):337-350.
[6] Raja G L,Ali A. Smith predictor based parallel cascade control strategy for unstable and integrating processes with large time delay[J].Journal of Process Control,2017,52:57-65.
[7] Lai C L, Hsu P L. Design the remote control system with the time-delay estimator and the adaptive Smith predictor[J]. IEEE Transactions on Industrial Informatics, 2010, 6(1):73-80.
[8] Lee K N, Yeo Y K. A new predictive PID controller for the processes with time delay[J]. Korean Journal of Chemical Engineering, 2009, 26(5):1194-1200.
[9] Vu T N L, Lee M. Smith predictor based fractional-order PI control for time-delay processes[J]. Korean Journal of Chemical Engineering, 2014, 31(8):1-9.
[10] Xin R H, Wang C Y, Liu X L, et al. Robust fractional order proportional integral control for large time-delay system[J]. Applied Mechanics & Materials, 2014, 716-717:1614-1619.
[11] 崔宁, 陈兴林, 曹开锐, 等. 空间光通信精跟踪系统的模糊自抗扰控制[J]. 光学精密工程, 2015, 23(5): 1394-1400.
Cui Ning, Chen Xing-lin, Cao Kai-rui, et al. Fuzzy active disturbance rejection control of fine tracking system for free space optical communication[J]. Optics and Precision Engineering, 2015, 23(5): 1394-1400.
[12] 魏伟, 戴明, 李嘉全, 等. 航空光电稳定平台的自抗扰控制系统[J]. 光学精密工程, 2015, 23(8): 2296-2305.
Wei Wei, Dai Ming, Li Jia-quan, et al. ADRC control system for airborne opto-electronic platform[J]. Optics and Precision Engineering, 2015, 23(8): 2296-2305.
[13] 周涛. 永磁同步电机调速系统的自抗扰控制[J]. 光学精密工程, 2016, 24(3): 582-589.
Zhou Tao. Active disturbance rejection control of speed governing system for PMSM[J]. Optics and Precision Engineering, 2016, 24(3): 582-589.
[14] 张明月, 杨洪波, 章家保, 等. 改进自抗扰控制谐波式电动舵机伺服系统[J]. 光学精密工程, 2014, 22(1): 99-108.
Zhang Ming-yue, Yang Hong-bo, Zhang Jia-bao, et al. Servo system of harmonic drive electromechanical actuator using improved ADRC[J]. Optics and Precision Engineering, 2014, 22(1): 99-108.
[15] 韩京清. 自抗扰控制器及其应用[J]. 控制与决策, 1998,13(1):19-23.
Han Jing-qing. Auto-disturbance-rejection controller and it's applications[J]. Control and Decision, 1998,13(1):19-23.
[16] 韩京清. 从PID技术到“自抗扰控制”技术[J]. 控制工程, 2002, 9(3): 13-18.
Han Jing-qing. From PID technique to active disturbances rejection control technique[J]. Control Engineering of China, 2002, 9(3): 13-18.
[17] 韩京清,张文革. 大时滞系统的自抗扰控制[J]. 控制与决策, 1999, 14(4): 354-358.
Han Jing-qing, Zhang wen-ge. ADRC control for large time-delay systems[J]. Control and Decision, 1999, 14(4): 354-358.
[18] 韩京清. 时滞对象的自抗扰控制[J]. 控制工程, 2008,15(增刊2):7-10.
Han Jing-qing. Auto-disturbances rejection control for time-delay systems[J]. Control Engineering of China, 2008,15(Sup.2):7-10.
[19] 刘开培, 吕鹏刚, 黄天戍,等. 时滞系统几种控制算法的相互关系及其近似实现[J]. 武汉大学学报:工学版, 2002, 35(2):83-87.
Liu Kai-pei, Lv Peng-gang, Huang tian-shu, et al. Relationship between control algorithms for systems with time delay and approximated implementation[J]. Engineering Journal of Wuhan University, 2002, 35(2):83-87.
[20] 李钟慎. 一种高鲁棒性的大滞后系统控制方法[J].智能控制技术,2009,31(2):35-37.
Li Zhong-shen. A high robustness control method for large time delay system[J]. Intelligent Control Technics,2009,31(2):35-37.
[1] 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819.
[2] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[3] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843.
[4] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[5] 闫冬梅, 钟辉, 任丽莉, 王若琳, 李红梅. 具有区间时变时滞的线性系统稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1556-1562.
[6] 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190.
[7] 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191-1198.
[8] 李静, 韩佐悦, 杨威, 邢国成, 周瑜. 基于非线性模型的磁流变半主动悬架驱动系统[J]. 吉林大学学报(工学版), 2018, 48(3): 645-651.
[9] 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[10] 张士涛, 张葆, 李贤涛, 王正玺, 田大鹏. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[11] 王林, 王洪光, 宋屹峰, 潘新安, 张宏志. 输电线路悬垂绝缘子清扫机器人行为规划[J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[12] 胡云峰, 王长勇, 于树友, 孙鹏远, 陈虹. 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[13] 朱枫, 张葆, 李贤涛, 王正玺, 张士涛. 基于强跟踪卡尔曼滤波的陀螺信号处理[J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[14] 晋超琼, 张葆, 李贤涛, 申帅, 朱枫. 基于扰动观测器的光电稳定平台摩擦补偿策略[J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[15] 冯建鑫. 具有测量时滞的不确定系统的递推鲁棒滤波[J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!