吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 246-251.doi: 10.13229/j.cnki.jdxbgxb201601037

• • 上一篇    下一篇

优化核参数的模糊C均值聚类算法

刘云, 刘富, 侯涛, 张潇   

  1. 吉林大学 通信工程学院,长春 130022
  • 收稿日期:2014-09-26 出版日期:2016-01-30 发布日期:2016-01-30
  • 通讯作者: 刘富(1968-),男,教授,博士生导师.研究方向:计算机视觉及模式识别.E-mail:liufu@jlu.edu.cn
  • 作者简介:刘云(1989-),男,博士研究生.研究方向:模式识别及生物信息学.E-mail:582111845@qq.com
  • 基金资助:
    吉林省重大科技攻关项目(20140204046); 国家自然科学基金项目(51105170)

Kernel-based fuzzy C-means clustering method based on parameter optimization

LIU Yun, LIU Fu, HOU Tao, ZHANG Xiao   

  1. College of Communications Engineering, Jilin University, Changchun 130022, China
  • Received:2014-09-26 Online:2016-01-30 Published:2016-01-30

摘要: 核模糊C均值聚类算法(Kernel-based fuzzy C-means clustering method, KFCM)的性能受核参数的影响很大,然而实践中核参数的选择是极其困难的。为了解决这个问题,本文基于样本在高维空间中的类内距离近、而类间距离远这一思路,提出了一种优化核参数的模糊C均值算法(Parameter optimation-based KFCM, POKFCM)。该算法首先利用K均值方法对样本集进行初始聚类,再通过比较实际核函数矩阵与理想核函数矩阵的相似性距离来确定最优核参数,最后将优化的核参数应用于核模糊C均值聚类算法。在6组UCI数据集上进行对比实验,结果表明POKFCM能有效地改善KFCM的聚类性能。

关键词: 人工智能, 核模糊C均值, 核函数, 参数优化

Abstract: Kernel-based Fuzzy C-means Clustering Method (KFCM) is a common method for data clustering. The performance of KFCM is greatly affected by the parameter of the kernel function, while the selection of kernel parameter is extremely difficult in practice. To solve this problem, a Parameter Optimization-based KFCM (POKFCM) is proposed according to the idea that the distances between samples of the same class are closer than the distance between samples from different classes. First, initial clustering of dataset is completed by K-means method. Then the optimal kernel parameter is determined by calculating the distance similarity between the actual kernel matrix and ideal kernel matrix. Finally, the optimal kernel parameter is applied to KFCM. Clustering experiment results of six UCI datasets illustrate that POKFCM can effectively improve the clustering performance of KFCM.

Key words: artificial intelligence, kernel-based fuzzy C-means, kernel function, parameter optimization

中图分类号: 

  • TP391
[1] Chen L, Lu M, Chen C L P, et al. Multiple kernel fuzzy C-means based image segmentation[C]∥IEEE International Conference on Systems, Man and Cybernetics, Istanbul,2010: 4123-4129.
[2] Gong M, Liang Y, Shi J, et al. Fuzzy C-means clustering with local information and kernel metric for image segmentation[J]. IEEE Transactions on Image Processing, 2013, 22(2): 573-584.
[3] Zhang J. Speech feature extraction of KPCA based on kernel fuzzy K-means clustering[C]∥IEEE International Conference on Computer Science and Service System (CSSS), Nanjing,2011: 756-759.
[4] 叶吉祥, 谭冠政, 路秋静. 基于核的非凸数据模糊C均值聚类研究[J]. 计算机工程与设计, 2005, 26 (7): 1784-1786.
Ye Ji-xiang, Tan Guan-zheng, Lu, Qiu-jing. Fuzzy C-means clustering algorithm to non-spherical shape data based on kernel[J]. Computer Engineering and Design, 2005, 26(7): 1784-1786.
[5] Park D C. Classification of audio signals using fuzzy C-means with divergence-based kernel[J]. Pattern Recognition Letters, 2009, 30 (9): 794-798.
[6] Liu J, Xu M. Kernelized fuzzy attribute C-means clustering algorithm[J]. Fuzzy Sets and Systems, 2008, 159 (18): 2428-2445.
[7] Gu C, Zhang S, Liu K, et al. Fuzzy kernel K-means clustering method based on immune genetic algorithm[J]. Journal of Computational Information Systems, 2011, 7 (1): 221-231.
[8] Mohamed B, Ahmed T, Lassad H, et al. A new extension of fuzzy C-Means algorithm using non Euclidean distance and kernel methods[C]∥International Conference on Control, Decision and Information Technologies (CoDIT), Hammamet, 2013: 242-249.
[9] Ferreira M R P, de Carvalho F D A T. Kernel fuzzy C-means with automatic variable weighting[J]. Fuzzy Sets and Systems, 2014, 237:1-46.
[10] Graves D, Pedrycz W. Fuzzy C-means, Gustafson-Kessel FCM, and kernel-based FCM: a comparative study[J]. Advances in Soft Computing, 2007,41:140-149.
[11] Graves D, Pedrycz W. Kernel-based fuzzy clustering and fuzzy clustering: a comparative experimental study[J]. Fuzzy Sets and Systems, 2010, 161(4): 522-543.
[12] Chen B, Liu H, Bao Z. A kernel optimization method based on the localized kernel Fisher criterion[J]. Pattern Recognition, 2008, 41(3): 1098-1109.
[13] Li J B, Wang Y H, Chu S C, et al. Kernel self-optimization learning for kernel-based feature extraction and recognition[J]. Information Sciences, 2014, 257: 70-80.
[14] Na W, Xia L. Kernel parameter optimization for semi-supervised fuzzy clustering with pairwise constraints[J]. Chinese Journal of Electronics, 2008, 17(2): 2007-2010.
[15] 李晓宇, 张新峰, 沈兰荪. 一种确定径向基核函数参数的方法[J]. 电子学报, 2005, 33(12): 2459-2463.
Li Xiao-yu, Zhang Xin-feng, Shen Lan-sun. A selection means on the parameter of radius basis function[J]. Acta Electronica Sinica, 2005, 33 (12):2459-2463.
[16] Zhang H, Lu J. Semi-supervised fuzzy clustering: a kernel-based approach[J]. Knowledge-Based Systems, 2009, 22(6):477-481.
[1] 董飒, 刘大有, 欧阳若川, 朱允刚, 李丽娜. 引入二阶马尔可夫假设的逻辑回归异质性网络分类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1571-1577.
[2] 顾海军, 田雅倩, 崔莹. 基于行为语言的智能交互代理[J]. 吉林大学学报(工学版), 2018, 48(5): 1578-1585.
[3] 王旭, 欧阳继红, 陈桂芬. 基于垂直维序列动态时间规整方法的图相似度度量[J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205.
[4] 张浩, 占萌苹, 郭刘香, 李誌, 刘元宁, 张春鹤, 常浩武, 王志强. 基于高通量数据的人体外源性植物miRNA跨界调控建模[J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213.
[5] 黄岚, 纪林影, 姚刚, 翟睿峰, 白天. 面向误诊提示的疾病-症状语义网构建[J]. 吉林大学学报(工学版), 2018, 48(3): 859-865.
[6] 李雄飞, 冯婷婷, 骆实, 张小利. 基于递归神经网络的自动作曲算法[J]. 吉林大学学报(工学版), 2018, 48(3): 866-873.
[7] 刘杰, 张平, 高万夫. 基于条件相关的特征选择方法[J]. 吉林大学学报(工学版), 2018, 48(3): 874-881.
[8] 李静, 丁明慧, 李立刚, 陈立军. 基于活塞形状的空气弹簧动特性分析与参数优化[J]. 吉林大学学报(工学版), 2018, 48(2): 355-363.
[9] 王旭, 欧阳继红, 陈桂芬. 基于多重序列所有公共子序列的启发式算法度量多图的相似度[J]. 吉林大学学报(工学版), 2018, 48(2): 526-532.
[10] 杨欣, 夏斯军, 刘冬雪, 费树岷, 胡银记. 跟踪-学习-检测框架下改进加速梯度的目标跟踪[J]. 吉林大学学报(工学版), 2018, 48(2): 533-538.
[11] 刘雪娟, 袁家斌, 许娟, 段博佳. 量子k-means算法[J]. 吉林大学学报(工学版), 2018, 48(2): 539-544.
[12] 胡云峰, 王长勇, 于树友, 孙鹏远, 陈虹. 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[13] 麻凯, 高继东, 闫磊, 徐涛. 基于碰撞胸压标定试验的仿真假人材料参数优选法[J]. 吉林大学学报(工学版), 2017, 47(5): 1498-1503.
[14] 曲慧雁, 赵伟, 秦爱红. 基于优化算子的快速碰撞检测算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1598-1603.
[15] 李嘉菲, 孙小玉. 基于谱分解的不确定数据聚类方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1604-1611.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!