吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 678-684.doi: 10.13229/j.cnki.jdxbgxb201602051

• 论文 • 上一篇    

用于高动态噪声背景的归一化谱协作感知算法

齐佩汉1, 李赞1, 司江勃1, 高锐1, 孙浩2   

  1. 1.西安电子科技大学 综合业务网国家重点实验室,西安 710071;
    2.国家无线电监测中心,北京 100037
  • 收稿日期:2014-01-02 出版日期:2016-02-20 发布日期:2016-02-20
  • 通讯作者: 李赞(1975-),女,教授,博士生导师.研究方向:隐蔽通信与信号检测.E-mail:zanli@xidian.edu.cn E-mail:phqi@xidian.edu.cn
  • 作者简介:齐佩汉(1986-),男,讲师,博士.研究方向:频谱感知与压缩感知.E-mail:phqi@xidian.edu.cn
  • 基金资助:
    国家自然科学基金项目(61501356,61301179)

Normalized spectrum based cooperative spectrum sensing algorithm for high dynamic noise background

QI Pei-han1, LI Zan1, SI Jiang-bo1, GAO Rui1, SUN Hao2   

  1. 1.State Key Lab of Integrated Services Networks, Xidian University, Xi'an 710071, China;
    2.State Radio Monitoring Center,Beijing 100037,China
  • Received:2014-01-02 Online:2016-02-20 Published:2016-02-20

摘要: 针对背景噪声电平在多维域上的高动态变化严重影响协作感知算法的性能这一问题,本文提出基于归一化谱的协作感知算法.该算法利用认知用户归一化谱的等增益平均作为检验统计量,依据傅里叶变换的渐进正态性和相互独立性计算功率谱的统计特性,推导出算法虚警概率和判决门限的闭式表达式.仿真表明:归一化谱协作感知算法对噪声电平的动态变化具有鲁棒性;相对于基于能量的大数判决硬协作感知算法和等增益软协作感知算法,本文算法具有更广泛的适用性.

关键词: 通信技术, 协作频谱感知, 功率谱, 背景噪声电平, 平坦慢衰落

Abstract: As high dynamic ranges of background noise level in time, spatial and frequency domain seriously affect the performance of cooperative spectrum sensing algorithms, a novel cooperative spectrum sensing algorithm based on Normalized Spectrum (NS) is proposed. The local NS is uploaded to the fusion center, and the equal gain average of NS is treated as detection statistics to detect signals in the fusion center. It makes use of asymptotic normality and independence of Fourier transform to get the stochastic properties of Power Spectral Density (PSD). The mathematical expression for probabilities of false alarm is derived. In accordance with the Neyman-Pearson criteria, the closed-form expression of decision threshold is calculated. The simulation results show that the NS algorithm is robust to dynamic ranges of background noise level. With respect to Majority Voting Hard Decision (MVHD) cooperative spectrum sensing algorithm and Equal Gain Soft Decision (EGSD) cooperative spectrum sensing algorithm based on energy, the NS algorithm has better performance and broader applications.

Key words: communication technology, cooperative spectrum sensing, power spectral density, background noise level, flat slow fading

中图分类号: 

  • TN911.23
[1] Haykin S. Cognitive radio: brain-empowered wireless communications[J]. IEEE Journal on Selected Areas in Communications, 2005, 23(2): 201-220.
[2] Wang B, Liu R, Clancy C. Evolutionary cooperative spectrum sensing game: how to collaborate?[J]. IEEE Transactions on Communications, 2010, 58(3): 890-900.
[3] 王秉钧, 王少勇.卫星通信系统[M].1版.北京:机械工业出版社,2004:159-172.
[4] Sharma P S, Raju S G, Murali M, et al. Assessment of noise level due to vehicular traffic at Warangal city[J]. International Journal of Environment and Pollution, 2007, 30(1): 137-153.
[5] Tang S K, Chu S H K. Noise level distribution functions for outdoor applications[J]. Journal of Sound and Vibration, 2001, 248(5): 887-911.
[6] Dennis R. Satellite Communications[M]. 3rd ed. New York: McGraw Hill, 2001:317-319.
[7] Chaudhari S, Lunden J, Koivunen V. Cooperative sensing with imperfect reporting channels: hard decisions or soft decisions?[J]. IEEE Transactions on Signal Processing, 2012, 60(1): 18-28.
[8] Ma J, Zhao G, Li Y. Soft combination and detection for cooperative spectrum sensing in cognitive radio networks[J]. IEEE Transactions on Wireless Communications, 2008, 7(11): 4502-4507.
[9] Pavlovska V, Gavrilovska L. Collaborative spectrum sensing scheme: quantized weighting with censoring[C]//3rd International ICST Conference on Ad Hoc Networks, Paris, France, 2012: 93-105.
[10] Chen Y. Analytical performance of collaborative spectrum sensing using censored energy detection[J]. IEEE Transactions on Wireless Communications, 2010, 9(12): 3856-3865.
[11] Zhang T, Tsang K. Optimal cooperative sensing scheduling for energy-efficient cognitive radio networks[C]//IEEE Conference on Computer Communications, Shanghai, China, 2011: 2723-2731.
[12] Nguyen N, Koo I. Application of maximum distance generalized quantiser for cooperative spectrum sensing in cognitive radio[J]. IET Communications, 2012, 6(1): 39-45.
[13] 丁汉清,杨家玮,赵志远. 基于分群的自适应双门限合作频谱感知[J].吉林大学学报:工学版,2011,41(2):537-542.
Ding Han-qing, Yang Jia-wei, Zhao Zhi-yuan. Adaptive dual threshold cooperative spectrum sensing based on grouping[J]. Jounal of Jilin University (Engineering and Technology Edition), 2011, 41(2):537-542.
[14] Zeng Y, Liang Y. Eigenvalue-based spectrum sensing algorithms for cognitive radio[J]. IEEE Transactions on Communications, 2009, 57(6): 1784-1793.
[15] Oppenheim A V. Discrete-Time Signal Processing[M]. 3rd ed. Upper Saddle River: Prentice Hall, 2010:426-427.
[1] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[2] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[3] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[4] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[5] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[6] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[7] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[8] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[9] 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[10] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[11] 武伟, 王世刚, 赵岩, 韦健, 钟诚. 蜂窝式立体元图像阵列的生成[J]. 吉林大学学报(工学版), 2018, 48(1): 290-294.
[12] 袁建国, 张锡若, 邱飘玉, 王永, 庞宇, 林金朝. OFDM系统中利用循环前缀的非迭代相位噪声抑制算法[J]. 吉林大学学报(工学版), 2018, 48(1): 295-300.
[13] 王金鹏, 曹帆, 贺晓阳, 邹念育. 基于多址干扰和蜂窝间互扰分布的多载波系统联合接收方法[J]. 吉林大学学报(工学版), 2018, 48(1): 301-305.
[14] 石文孝, 孙浩然, 王少博. 无线Mesh网络信道分配与路由度量联合优化算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1918-1925.
[15] 姜来为, 沙学军, 吴宣利, 张乃通. LTE-A异构网络中新的用户选择接入和资源分配联合方法[J]. 吉林大学学报(工学版), 2017, 47(6): 1926-1932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!