吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (4): 1325-1329.doi: 10.13229/j.cnki.jdxbgxb201604044

• 论文 • 上一篇    下一篇

基于帧间差分和背景差分的运动目标检测算法

孙挺1, 2, 齐迎春2, 耿国华1   

  1. 1.西北大学 可视化研究所,西安 710069;
    2.周口师范学院 计算机科学与技术学院,河南 周口 466001
  • 收稿日期:2015-04-21 出版日期:2016-07-20 发布日期:2016-07-20
  • 作者简介:孙挺(1972-),男,副教授,博士.研究方向:智能信息处理,科学可视化.E-mail:20011026@zknu.edu.cn
  • 基金资助:
    “973”国家重点基础研究发展计划前期研究专项项目(2011CB311802); 河南省科技厅科技发展计划项目(122400450356); 河南省科技厅科技发展计划软科学项目(132400410927)

Moving object detection algorithm based on frame difference and background subtraction

SUN Ting1, 2, QI Ying-chun2, GENG Guo-hua1   

  1. 1.Institute of Visualization Technology,Northwest University,Xi'an 710069,China;
    2.School of Computer Science and Technology,Zhoukou Normal University,Zhoukou 466001,China
  • Received:2015-04-21 Online:2016-07-20 Published:2016-07-20

摘要: 针对运动目标检测领域中帧间差分法和背景差分法的缺陷,提出一种将两种方法融合在一起的新算法。首先,该算法在采用混合高斯建立背景模型时对方差更新作了修改,使得模型与真实背景更接近。其次,用连续三帧差分代替两帧差分,采取自适应差分阈值的方法。最后,将两种差分的结果融合并作形态学处理提取目标。实验结果表明,本文算法能有效抑制噪声和空洞,适应性强、检测效果良好。

关键词: 通信技术, 帧间差分, 背景差分, 目标检测, 融合

Abstract: In order to overcome the defects of frame difference and background subtraction algorithms in moving object detection, a new method that integrates the two algorithms is proposed. First, when the Gaussian mixture model is employed to build the background model, the update of the variance is modified, so the model is more close to the real background. Then, two consecutive frame differencing is replaced by three consecutive frame differencing, and the differencing threshold is adaptive. Finally, the results of the two differences are integrated and the target is extracted after morphological process. Experimental results show that the method can effectively suppress noise and the "hole", the method is more adaptable and has good detection results.

Key words: communications, frame difference, background subtraction, object detection, integration

中图分类号: 

  • TN91
[1] 汪冲,席志红,肖春丽. 基于背景差分的运动目标检测方法[J]. 应用科技,2009,36(10):16-18.
Wang Chong, Xi Zhi-hong, Xiao Chun-li. Moving objects detection based on background subtraction method[J]. Applied Science and Technology,2009,36(10):16-18.
[2] Piccardi M. Background subtraction techniques: a review[C]∥IEEE International Conference on Systems, Man and Cybemeties, Sydney, Australia,2004:3099-3104.
[3] 王振亚,曾黄麟. 一种基于帧间差分和光流技术结合的运动车辆检测和跟踪新算法[J]. 计算机应用与软件,2012,29(5):117-120.
Wang Zhen-ya, Zeng Huang-lin. A new algorithm of moving vehicle detection and tracking based on combining frame difference method with optical flow technique[J]. Computer Applications and Software,2012,29(5):117-120.
[4] Tsai D M, Lai S C. Independent component analysis-based background subtraction for indoor surveillance[J]. IEEE Transactions on Image Processing, 2009, 18(1):158-160.
[5] Zhang Jie-yu, Barron J L. Optical flow at occlusion[C]∥The Ninth Conference on Computer and Robot Vision, Toronto, Canada, 2012: 198-205.
[6] 胡觉晖, 李一民, 潘晓露. 改进的光流法用于车辆识别与跟踪[J].科学技术与工程,2010, 10(23):5814-5817.
Hu Jue-hui, Li Yi-min, Pan Xiao-lu. An improved optical flow algorithmin in vehicle identification and tracking[J]. Science Technology and Engineering,2010, 10(23):5814-5817.
[7] Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking[C]∥IEEE Computer Vision and Pattern Recognition,Fort Collins, USA, 1999: 246-250.
[8] Zhang J, Chen C H. Moving objects detection and segmentation in dynamic video backgrounds[C]∥IEEE Conference on Technologies for Homeland Security, Woburn, MA,2007:64-69.
[9] 袁国武, 陈志强, 龚健,等. 一种结合光流法与三帧差分法的运动目标检测算法[J]. 小型微型计算机系统,2013, 34(3):669-671.
Yuan Guo-wu, Chen Zhi-qiang,Gong Jian,et al. A moving object detection algorithm based on a combination of optical flow and three-frame difference[J]. Journal of Chinese Computer Systems,2013, 34(3):6 69-671.
[10] 陈俊超, 张俊豪, 刘诗佳,等. 基于背景建模与帧间差分的目标检测改进算法[J]. 计算机工程,2011, 37(增刊):171-173.
Chen Jun-chao, Zhang Jun-hao, Liu Shi-jia,et al. Improved target detection algorithm based on background modeling and frame difference[J]. Computer Engineering,2011, 37(Sup.):171-173.
[11] 王小平,张丽杰,常佶. 基于单高斯背景模型运动目标检测方法的改进[J]. 计算机工程与应用,2009,45(21):118-120.
Wang Xiao-ping, Zhang Li-jie, Chang Ji. Improved method of moving objects detection based on single-gaussian background mode[J]. Computer Engineering and Applications,2009,45(21):118-120.
[12] 魏晓慧,李良福,钱钧. 基于混合高斯模型的运动目标检测方法研究[J]. 应用光学,2010, 31(4):574-578.
Wei Xiao-hui, Li Liang-fu, Qian Jun. Moving object detection based on mixture Gaussian mode[J]. Journal of Applied Optics,2010, 31(4):574-578.
[13] 张俊根, 姬红兵. 高斯混合粒子PHD滤波被动测角多目标跟踪[J]. 控制与决策,2011, 26(3):413-417.
Zhang Jun-gen, Ji Hong-bing. Gaussian mixture particle probability hypothesis density based passive bearings-only multi-target tracking[J]. Control and Decision,2011, 26(3):413-417.
[14] Li Li, Xu Ji-ning. Moving human detection algorithm based on Gaussian mixture model[C]∥Proceedings of the 29th Chinese Control Conference, Beijing,2010:2853-2856.
[15] Xu L Q,Landabaso J L, Lei B. Segmentation and tracking of multiple moving objects for intelligent video analysis[J]. BT Technology Journal, 2004, 22(3):140-149.
[1] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[2] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[3] 刘哲, 徐涛, 宋余庆, 徐春艳. 基于NSCT变换和相似信息鲁棒主成分分析模型的图像融合技术[J]. 吉林大学学报(工学版), 2018, 48(5): 1614-1620.
[4] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[5] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[6] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[7] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[8] 林金花, 王延杰, 王璐, 姚禹. 全局相机姿态优化下的快速表面重建[J]. 吉林大学学报(工学版), 2018, 48(3): 909-918.
[9] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[10] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[11] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[12] 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[13] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[14] 武伟, 王世刚, 赵岩, 韦健, 钟诚. 蜂窝式立体元图像阵列的生成[J]. 吉林大学学报(工学版), 2018, 48(1): 290-294.
[15] 袁建国, 张锡若, 邱飘玉, 王永, 庞宇, 林金朝. OFDM系统中利用循环前缀的非迭代相位噪声抑制算法[J]. 吉林大学学报(工学版), 2018, 48(1): 295-300.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!