吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (5): 1464-1470.doi: 10.13229/j.cnki.jdxbgxb201605013

• • 上一篇    下一篇

高速列车车轮及轮对的声辐射特性

罗乐1, 郑旭1, 吕义2, 郝志勇1   

  1. 1.浙江大学 能源工程学系,杭州 310027;
    2.长春轨道客车股份有限公司,长春 130062
  • 收稿日期:2015-04-21 出版日期:2016-09-20 发布日期:2016-09-20
  • 通讯作者: 郑旭(1983-),男,讲师,博士.研究方向:汽车与高速列车振动噪声控制.E-mail:zhengxu@zju.edu.cn
  • 作者简介:罗乐(1990-),男,博士研究生.研究方向:高速列车减振降噪与信号处理.E-mail:11127014@zju.edu.cn
  • 基金资助:
    “863”国家高技术研究发展计划项目(2011AA11A103); 中央高校基本科研业务费专项资金项目(2016QNA4012).

Sound radiation characteristics of high-speed train wheel and wheelsets

LUO Le1, ZHENG Xu1, LYU Yi2, HAO Zhi-yong1   

  1. 1.Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China;
    2.Changchun Railway Vehicles Co., Ltd., Changchun 130062, China
  • Received:2015-04-21 Online:2016-09-20 Published:2016-09-20

摘要: 以CRH3型高速列车的标准车轮为例,采用声学边界元法计算了单个车轮在单位垂向力下的辐射噪声。介绍了一种新型辐板屏蔽式阻尼车轮,并对比分析了阻尼车轮和标准车轮的声辐射特性。考虑了较为完整的边界条件,首先基于多体动力学提取了350 km/h下列车的轮轨激励,然后建立了四轮对的声振耦合模型,用于研究轮对噪声在车厢表面形成的声学分布。结果表明:单个车轮的辐射声场随角度呈瓣状变化,随距离逐层递减,具有明显的指向性,踏面和辐板对辐射噪声的贡献量最大;相对于标准车轮,阻尼车轮的辐射声功率明显降低,尤其在峰值频率处;四轮对的辐射声场是多个车轮噪声源经叠加和干涉作用后的复合声场,主要作用在车厢端部,且保留了基本的指向特征;对比观察点处的声学响应发现,标准轮对的噪声峰值均在110 dB以下,而阻尼轮对的声压级总值下降约15 dB,降噪效果明显。

关键词: 阻尼车轮, 轮对, 滚动噪声, 声学边界元法, 多体动力学

Abstract: The standard wheel of model CRH3 high-speed train was taken as the study subject. The radiation noise of a single wheel under a vertical unit force excitation was calculated by acoustic Boundary Element Method (BEM). Then a new damped wheel with web-mounted noise shielding was introduced. The sound characteristics of both wheels were analyzed contrastively. Detailed boundary conditions were taken into consideration in studying the wheelsets rolling noise distribution on the coach surface. First, Multi-body Dynamics (MBD) was adopted to extract the wheel-rail interaction forces at the speed of 350 km/h. Then, a vibro-acoustic coupling model with four wheelsets was established. The results show that sound field of a single wheel reveals an evident directivity with petaloid variation by angle and continuous decrease by distance; and the wheel tread and web contribute the most rolling noise. Compared with the standard wheel the acoustic power of the damped wheel decreases significantly, especially at the peak frequency. The sound field of four wheelsets, which mainly distributes at the end of the coach and maintains the basic directivity, is formed under a composite overlap and interference effect between multiple wheel noise sources. Finally, a sound pressure spectrum comparison at an observation point indicates that the peak value of the standard wheel noise is mostly below 110 dB, while the total sound pressure level of the damped wheelsets is reduced by 15 dB, therefore, the noise reduction effect of the wheelsets is quite satisfactory.

Key words: damped wheel, wheelsets, rolling noise, acoustic boundary element method, multi-body dynamics

中图分类号: 

  • TB532
[1] 张曙光. 350 km/h 高速列车噪声机理、声源识别及控制[J]. 中国铁道科学,2009, 30(1): 86-90.
Zhang Shu-guang. Noise mechanism, sound source localization and noise control of 350 km/h high-speed train[J]. China Railway Science,2009, 30(1):86-90.
[2] Poisson F, Gautier P E, Letourneaux F. Noise sources for high speed trains: a review of results in the TGV case[C]∥Proceedings of the 9th International Workshop on Railway Noise, Munich, Germany: Springer, 2007:71-77.
[3] Thompson D J, Jones C J C. A review of the modelling of wheel/rail noise generation[J]. Journal of Sound and Vibration,2000, 231(3): 519-536.
[4] Thompson D J, Jones C J C. Sound radiation from a vibrating railway wheel[J]. Journal of Sound and Vibration,2002, 253(2): 401-419.
[5] Sato K, Sasakura M, Akutsu K, et al. Acoustic characteristics of wheels with different Web shapes[J]. Quarterly Report of Railway Technical Research Institute, 2006, 47(1): 28-33.
[6] Stefanelli R, Dual J, Cataldi-Spinola E. Acoustic modelling of railway wheels and acoustic measurements to determine involved eigenmodes in the curve squealing phenomenon[J]. Vehicle System Dynamics,2006, 44(Sup.1): 286-295.
[7] 房建英,肖新标,金学松,等. 行车速度对高速列车车轮振动声辐射特性的影响[J]. 机械工程学报,2010, 46(22): 96-104.
Fang Jian-ying, Xiao Xin-biao, Jin Xue-song, et al. Effect of train speed on acoustic radiation characteristics of high-speed train wheel vibration[J]. Journal of Mechanical Engineering, 2010, 46(22):96-104.
[8] 方锐,肖新标,金学松. 辐板型式和轮轨接触点位置对车轮声辐射特性的影响[J]. 振动与冲击,2009, 28(1): 112-117.
Fang Rui, Xiao Xin-biao, Jin Xue-song. Effects of web shape and contact position on sound radiation characteristic of railway wheel[J]. Journal of Vibration and Shock, 2009, 28(1):112-117.
[9] 杨新文,石广田,杨建近. 车轮辐板开孔对车轮振动噪声辐射特性的影响[J]. 中国铁道科学,2014, 35(2): 58-64.
Yang Xin-wen, Shi Guang-tian, Yang Jian-jin. Effect of web hole on vibration noise radiation characteristics of railway wheel[J]. China Railway Science, 2014, 35(2):58-64.
[10] Efthimeros G A, Photeinos D I, Diamantis Z G, et al. Vibration/noise optimization of a FEM railway wheel model[J]. Engineering Computations,2002, 19(8): 922-931.
[11] Nielsen J C O, Fredö C R. Multi-disciplinary optimization of railway wheels[J]. Journal of Sound and Vibration,2006, 293(3-5): 510-521.
[12] 薛弼一,王谛,肖新标,等. 辐板屏蔽式阻尼车轮振动声辐射特性试验研究[J]. 机械工程学报, 2013, 49(10): 1-7.
Xue Bi-yi, Wang Di, Xiao Xin-biao, et al. Experimental study on vibration and sound radiation characteristics of new type of damped wheel with web-mounted noise shielded[J]. Journal of Mechanical Engineering, 2013, 49(10):1-7.
[13] 刘玉霞,温泽峰,肖新标,等. 不同阻尼形式对车轮振动声辐射特性的影响[J]. 噪声与振动控制, 2014, 34(4): 62-66.
Liu Yu-xia, Wen Ze-feng, Xiao Xin-biao, et al. Effects of different forms of damping on vibration and sound radiation characteristics of wheels[J]. Noise and Vibration Control, 2014, 34(4):62-66.
[14] Brancati A, Aliabadi M H. Boundary element simulations for local active noise control using an extended volume[J]. Engineering Analysis with Boundary Elements, 2012, 36(2): 190-202.
[15] Ling L, Xiao X, Xiong J, et al. A 3D model for coupling dynamics analysis of high-speed train/track system[J]. Journal of Zhejiang University: Science A, 2014, 15(12): 964-983.
[1] 贾拓,赵丁选,崔玉鑫. 铰接式装载机倾翻预警方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1762-1769.
[2] 王海燕,李贻斌,宁龙霄. 液压驱动双足机器人运动系统的设计及实现[J]. 吉林大学学报(工学版), 2014, 44(3): 750-756.
[3] 张健红,左春柽,钱生君,齐培正 . 基于轴承间隙模型的摆锤碰撞试验台仿真研究[J]. 吉林大学学报(工学版), 2007, 37(03): 553-0557.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] 马万经, 谢涵洲. 双停车线进口道主、预信号配时协调控制模型[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] 于德新, 仝倩, 杨兆升, 高鹏. 重大灾害条件下应急交通疏散时间预测模型[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] 肖赟, 雷俊卿, 张坤, 李忠三. 多级变幅疲劳荷载下预应力混凝土梁刚度退化[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .
[10] 肖锐, 邓宗才, 兰明章, 申臣良. 不掺硅粉的活性粉末混凝土配合比试验[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .