吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (1): 274-280.doi: 10.13229/j.cnki.jdxbgxb20161273

• 论文 • 上一篇    下一篇

面向服务推荐的QoS成列协同排序算法

曹婧华1, 2, 孔繁森1, 冉彦中2   

  1. 1.吉林大学 机械与工程学院,长春130022;
    2.吉林大学 计算机公共教学与研究中心,长春130012
  • 收稿日期:2016-11-24 出版日期:2018-02-26 发布日期:2018-02-26
  • 通讯作者: 孔繁森(1965-),男,教授,博士生导师.研究方向:机械动力学,工业工程.E-mail:kongfs@jlu.edu.cn
  • 作者简介:曹婧华(1978-),女,副教授,博士研究生.研究方向:工业工程.E-mail:caojh@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41274076)

QoS-aware listwise collaborative ranking algorithm for service recommendation

CAO Jing-hua1, 2, KONG Fan-sen1, RAN Yan-zhong2   

  1. 1. College of Mechanical Science and Engineering,Jilin University,Changchun 130022,China;
    2. Center for Computer Fundamental Education,Jilin University,Changchun 130012,China,
  • Received:2016-11-24 Online:2018-02-26 Published:2018-02-26

摘要: 针对传统基于服务质量(QoS)预测的推荐方法较少考虑服务间的排序对产生推荐列表的影响,不能准确体现用户偏好的问题。本文提出了一种基于QoS排序学习的服务推荐算法,选用计算复杂度较低的成列损失函数来优化矩阵因式分解模型,并通过挖掘用户间的近邻信息来进一步提高QoS排序的准确性。在真实数据集上的大量实验表明,该算法具有良好的性能。

关键词: 计算机应用, 服务推荐, 协同过滤, 排序学习, 矩阵因式分解

Abstract: With the increasing number of candidate services that meet the same function on the Internet, service selection becomes more and more difficult, and service recommendation becomes the key issue that needs to be solved urgently. However, the traditional service QoS prediction based recommendation method pays less attention to the role of the service ranking to the recommendation list, which can not accurately reflect the user preference. To solve the above problems, this paper proposes a QoS ranking learning based service recommendation algorithm. It selects low computational complexity listwise loss function to optimize the matrix factorization model, and further improves the accuracy of QoS ranking by mining the neighbor information between users. Experiments on real datasets show that the proposed algorithm has good performance.

Key words: computer application service recommendation, collaborative filtering, learning to rank, matrix factorization

中图分类号: 

  • TP399
[1] Zheng Z, Zhang Y,Lyu M R.Investigating QoS of real-world Web services[J]. 2014, 7(1):32-39.
[2] 黄震华, 张佳雯, 田春岐,等. 基于排序学习的推荐算法研究综述[J]. 软件学报, 2016, 27(3):691-713.
Huang Zhen-hua,Zhang Jia-wen,Tian Chun-qi.Survey on learning to rank based on recommendition alogorithms[J].Journal of software,2016,27(3):691-713.
[3] Balakrishnan S,Chopra S.Collaborative ranking[C]∥ ACM International Conference on Web Search and Data Mining,ACM, 2012:143-152.
[4] 邵凌霜, 周立, 赵俊峰,等. 一种Web Service的服务质量预测方法[J]. 软件学报, 2009, 20(8):2062-2073.
Shao Ling-shuang,Zhou Li,Zhao Jun-feng,el al.Web service QoS prediction.approach[J].Journal of Software,2009,20(8):2062-2073.
[5] Zheng Z, Ma H, Lyu M R, et al.QoS-aware web service recommendation by collaborative filtering[J]. IEEE Transactions on Services Computing, 2011, 4(2):140-152.
[6] 俞东进, 殷昱煜, 吴萌萌,等. 基于混合协同过滤的Web服务QoS预测方法[J]. 浙江大学学报:工学版, 2014, 48(11):2039-2045.
Yu Dong-jin,Yin Yu-yu,Wu Meng-meng,et al.QoS prediction for Web services based on hybrid collaborative filtering[J].Journal of Zhe jiang University(Engineering Science),2014,48(11):2039-2045.
[7] Ma Y, Wang S,Hung P C K,et al. A highly accurate prediction algorithm for unknown Web service QoS values[J]. IEEE Transactions on Services Computing, 2017, 9(4):511-523.
[8] Zheng Z, Chen J,Lyu M R.Personalized Web service recommendation via normal recovery collaborative filtering[J]. IEEE Transactions on Services Computing, 2013, 6(4):573-579.
[9] Zheng Z, Ma H,Lyu M R, et al.Collaborative Web service QoS prediction via neighborhood integrated matrix factorization[J]. IEEE Transactions on Services Computing, 2013, 6(3):289-299.
[10] 苏凯, 马良荔, 孙煜飞,等. 面向Web服务QoS预测的非负矩阵分解模型[J]. 浙江大学学报:工学版, 2015, 49(7):1358-1366.
Su Kai,Ma Liang-li,Sun Yu-fei,et al.Non-negative matrix factorization model for Web service QoS prediction[J],Journal of Zhejiang University (Engineering Science),2015,49(7):1358-1366.
[11] Zhang W, Sun H, Liu X, et al.Temporal QoS-aware Web service recommendation via non-negative tensor factorization[C]∥ International Conference on World Wide Web,2014:585-596.
[12] Zheng Z, Wu X, Zhang Y, et al.QoS ranking prediction for cloud services[J]. IEEE Transactions on Parallel & Distributed Systems, 2013, 24(6):1213-1222.
[13] Salakhutdinov R, Mnih A.Probabilistic matrix factorization[C]∥ International Conference on Neural Information Processing Systems, Curran Associates Inc,2007:1257-1264.
[14] Cao Z, Qin T, Liu T Y, et al.Learning to rank: from pairwise approach tolistwise approach[C]∥ International Conference on Machine Learning,ACM, 2007:129-136.
[1] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[2] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[3] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[4] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[7] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[8] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[9] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[10] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[11] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[12] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[13] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[14] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
[15] 侯永宏, 王利伟, 邢家明. 基于HTTP的动态自适应流媒体传输算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 宋现敏, 金盛, 王殿海, 曹婧华. 考虑侧向偏移的车辆跟驰模型[J]. 吉林大学学报(工学版), 2011, 41(02): 333 -0337 .