吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (1): 180-184.doi: 10.13229/j.cnki.jdxbgxb201701027

• 论文 • 上一篇    下一篇

纤维断裂损伤对复合材料板中导波频散特性的影响

陈江义, 刘保元   

  1. 郑州大学 机械工程学院,郑州 450001
  • 收稿日期:2015-08-10 出版日期:2017-01-20 发布日期:2017-01-20
  • 作者简介:陈江义(1974-),男,副教授,博士.研究方向:结构动力学.E-mail:cjy1974@zzu.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(U1333201); 国家自然科学基金项目(11172273).

Influence of fiber fracture damage on dispersion characteristic of guided wave in composite plate

CHEN Jiang-yi, LIU Bao-yuan   

  1. School of Mechanical Engineering, Zhengzhou University, Zhengzhou 450001, China
  • Received:2015-08-10 Online:2017-01-20 Published:2017-01-20

摘要: 利用带状单元法分析了存在纤维断裂损伤的复合材料板中导波的频散特性,并讨论了不同损伤模式对导波频散特性的影响。将纤维增强复合材料板的每一铺层视为一个带状单元,对于纤维断裂铺层,假设材料常数退化成与基体相同。在此假设下,获得了含纤维断裂损伤复合材料板的运动方程,将该方程转化为特征值问题,即可获得板中导波频率与波数的关系。最后利用数值算例分析了单层纤维断裂和多层纤维断裂损伤对导波频散特性的影响,分析结果可对纤维增强复合材料板的超声无损检测技术提供理论依据。

关键词: 工程力学, 复合材料板, 导波, 频散特性, 无损检测, 带状单元法

Abstract: The dispersion characteristic of guided wave in composite plate with fiber fracture damage is analyzed using strip element method, in which the different damage patterns are considered. The layer with fracture damage is assumed to have the same elastic constants as the substrate. Taking each layer as a strip element, the equation governing the movement of a single layer is constructed. Through assembling the governing equations of all layers, the global movement equation of the composite plate with fiber fracture damage is obtained. Rewriting the global equation yields the corresponding eigenvalue problem, which can be used to calculate the relationship between the guided wave frequency and wave number in the plate. Finally, the influence of different damage patterns on the dispersion characteristic of guided wave is investigated by numerical examples. The results may provide theoretical basis for non-destructive evaluation of damage in the fiber-reinforced composite plate via ultrasound technology.

Key words: engineering mechanics, composite plate, guided wave, dispersion characteristic, non-destructive evaluation, strip element method

中图分类号: 

  • O426.2
[1] 王铮, 何方成, 梁菁, 等. 复合材料层板铺层方式对超声检测结果的影响[J]. 材料工程, 2013(2): 52-54.
Wang Zheng, He Fang-cheng, Liang Jing, et al. Influence of the orientation of laying-up in composite laminates on ultrasonic inspection[J]. Journal of Materials Engineering, 2013(2): 52-54.
[2] 刘怀喜,张恒,马润香. 复合材料无损检测方法[J]. 无损检测, 2013, 25(12): 631-634.
Liu Huai-xi, Zhang Heng, Ma Run-xiang. Nondestructive testing techniques for composite materials[J]. Nondestructive Testing, 2013, 25(12): 631-634.
[3] 孙丹. 功能梯度材料板中波的传播特性和冲击响应分析[D]. 长沙: 湖南大学机械与运载工程学院, 2011.
Sun Dan. The analysis of wave propagation and impact response of a functionally graded material plate[D]. Changsha:College of Mechanical and Vehicle Engineering,Hunan University, 2011.
[4] Lee J. Plate waves in multi-directional composite laminates[J]. Composite Structures, 1999, 46(3): 289-297.
[5] Liu G R, Tani J, Ohyoshi T, et al. Characteristic wave surface in anisotropic laminates plates[J]. ASME Journal of Vibration and Acoustics, 1991, 113(3): 279-285.
[6] Liu G R, Tani J, Watanabe K,et al. Lame wave propagation in anisotropic laminates[J]. ASME Journal of Applied Mechanics, 1990, 57(4): 923-929.
[7] Nishiwaki T, Yokoyama A, Maekawa Z, et al. A quasi-three-dimensional elastic wave propagation analysis for laminated composites[J]. Composite Structures, 1995,32(1-4): 635-640.
[8] Jeong H, Jang Y S. Wavelet analysis of plate wave propagation in composite laminates[J]. Composite Structures, 2000, 49(4): 443-450.
[9] Jeong H. Analysis of plate wave propagation in anisotropic laminates using a wavelet transforms[J]. NDT & E International, 2001,34(3): 185-190.
[10] Datta S K, Shah A H, Bratton R L, et al. Wave propagation in laminated composite plates[J]. Journal of the Acoustical Society of America, 1988, 83(6): 2020-2026.
[11] Kudela P, Zak A,Krawczuk M, et al. Modeling of wave propagation in composite plates using the time domain spectral element method[J]. Journal of Sound and Vibration, 2007, 302(4/5): 728-745.
[12] Lima W J N, Braga A M B. Dispersive waves in composites, a comparison between various laminated plate theories[J]. Composite Structures, 1993, 25(1-4): 449-457.
[13] Liu G R, Achenbach J D. Strip element method to analyze wave scattering by cracks in anisotropic laminated plates[J]. ASME Journal of Applied Mechanics, 1995,67:607-613.
[14] 陈江义,潘尔年. 任意梯度分布板中的导波频散特性分析[J]. 应用基础与工程科学学报, 2014, 22(6): 1230-1237.
Chen Jiang-yi, Pan Er-nian. Dispersion relations for guided wave in functionally graded plates with arbitrary grade[J]. Journal of Basic Science and Engineering, 2014,22(6):1230-1237.
[15] 张海燕, 他德安, 刘镇清. 层状各向异性复合板中的兰姆波[M]. 北京:科学出版社, 2008.
[1] 尼颖升,孙启鑫,马晔,徐栋,刘超. 基于空间网格分析的多箱室波形钢腹板组合梁腹板剪力分配[J]. 吉林大学学报(工学版), 2018, 48(6): 1735-1746.
[2] 闫亚宾, 王晓媛, 万强. 纳米尺度界面低周疲劳破坏行为[J]. 吉林大学学报(工学版), 2017, 47(4): 1201-1206.
[3] 孟广伟, 冯昕宇, 周立明, 李锋. 基于降维算法的结构可靠性分析[J]. 吉林大学学报(工学版), 2017, 47(1): 174-179.
[4] 杨慧艳, 何晓聪, 周森. 压印接头强度的有限元模型及理论计算方法[J]. 吉林大学学报(工学版), 2015, 45(3): 864-871.
[5] 张庆, 王磊. 基于微分方程组的多排桩内力分析[J]. 吉林大学学报(工学版), 2014, 44(5): 1327-1333.
[6] 赵世佳, 徐涛, 陈炜, 谭丽辉. 接近亏损系统模态灵敏度分析的有效算法[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 497-499.
[7] 徐涛, 赵世佳, 张炜, 谭丽辉, 吕岗, 李恒. N重亏损系统摄动的原点移位组合近似方法[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 147-150.
[8] 闫光, 范舟, 李钟海, 程小全, 刘克格, 左春柽. 复合材料加口盖柱壳的设计与分析[J]. , 2012, (06): 1437-1441.
[9] 李春良1,2,王国强1,刘福寿3,赵凯军4. 盾构管片结构的力学行为分析[J]. 吉林大学学报(工学版), 2011, 41(6): 1669-1674.
[10] 张道明1,郭学东2,赵志蒙3. 钢筋混凝土梁弯曲损伤分析的摄动法[J]. 吉林大学学报(工学版), 2011, 41(05): 1358-1363.
[11] 陈耕野, 王彦召, 姚战卫. 平行弦钢桁架应力与感应电动势随荷载的变化[J]. 吉林大学学报(工学版), 2010, 40(增刊): 222-0227.
[12] 贾超, 纪圣振, 张峰. 青岛海湾大桥混凝土墩的时变可靠度[J]. 吉林大学学报(工学版), 2010, 40(06): 1543-1549.
[13] 陆念力,张宏生. 计及纵横变形效应的几何非线性三次样条梁单元[J]. 吉林大学学报(工学版), 2010, 40(03): 745-0751.
[14] 朴香兰,王国强,张占强,郝万军. 水平转弯颗粒流的离散元模拟[J]. 吉林大学学报(工学版), 2010, 40(01): 98-0102.
[15] 宋敏,姜平,闫广武. 各向同性介质中地震压力波的格子 Boltzmann 模拟[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 341-0343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!