吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 498-503.doi: 10.13229/j.cnki.jdxbgxb201702021
张敏, 李松晶, 蔡申
ZHANG Min, LI Song-jing, CAI Shen
摘要: 为了更好地利用变色镜保护人眼不受强光的伤害,提出了一种微流控液体变色眼镜。以透光性良好的高分子聚合物PDMS(polydimethylsiloxane)为材料,采用软刻蚀技术代替传统的机械加工,制作了具有微流道结构的镜片变色层。通过对封接面的表面改性处理实现了PDMS变色层和基底镜片(玻璃/光学树脂)之间的不可逆封接,构成了具有闭合微流道的液体变色镜片。设计并制作了一种无阀压电微泵控制器用以控制镜片微流道内有色液体的循环流动,实现镜片的变色功能。实验测试了微泵在不同驱动电压和驱动频率下变色眼镜的响应特性。测试结果表明:与传统的固体感光变色镜相比,无阀压电微泵控制的微流控液体变色眼镜具有较快的响应速度,较高的可控性和良好的可逆性。
中图分类号:
[1] Liberale C, Cristiani I, Cojoc G, et al. Integrated microfluidic device for single-cell trapping and spectroscopy[J]. Sci Rep, 2013, 3(2):1-6. [2] Lee S H, Oh E H, Park T H. Cell-based microfluidic platform for mimicking human olfactory system[J]. Biosens Bioelectron, 2015, 74(1):554-561. [3] Majedi F S, Hasani-Sadrabadi M M, Emami S H, et al. Microfluidic assisted self-assembly of chitosan based nanoparticles as drug delivery agents[J]. LAB Chip, 2013, 13(2):204-207. [4] Lee S H, Rhee H W, van Noort D, et al. Microfluidic bead-based sensing platform for monitoring kinase activity[J]. Biosens Bioelectron, 2014, 57(5):1-9. [5] Crooks J A, Stilwell M D, Oliver P M, et al. Decoding the chemical language of motile bacteria by using high-throughput microfluidic assays[J]. Chembiochem, 2015, 16(15):2151-2155. [6] Vasdekis A E, Grate J W, Konopka A E, et al. Simple microfluidic integration of 3D optical sensors based on solvent immersion lithography[C]∥Conference on Lasers and Electro-Optics (CLEO). San Jose:IEEE, 2014:1-2. [7] Lim J L, Hu D J J, Shum P P, et al. Design and analysis of microfluidic optical fiber device for refractive index sensing[J]. IEEE Photonic Tech L, 2014, 26(21):2130-2133. [8] Awano T. Electronic structure of silver halide doped glasses[J]. Solid State Ionics, 2013, 262(9):743-746. [9] Giraldo L M, Velásquez D. Obtaining relief structures in silver halide materials[J]. Opt Pura Apl, 2013, 46(4):363-368. [10] 陈国贵. 变色镜片的性能、鉴别及应用[J]. 中国眼镜科技杂志,2005,9(1):95-96. Chen Guo-gui. The performance, identification and application of colour lenses[J].China Glasses Science-Technology Magazine, 2005, 9(1):95-96. [11] Dumas J C, Vidal J, Dumas V. Fast response liquid crystal glasses[J]. Lighting Res Technol, 2012, 44(4):498-505. [12] 赵天, 杨志刚, 刘建芳, 等. 利用压电微泵驱动和脉动混合可控合成金纳米粒子[J]. 光学精密工程, 2014, 22(4): 904-910. Zhao Tian, Yang Zhi-gang, Liu Jian-fang,et al. Controlled synthesis of gold nanoparticles based on PZT micropump and pulsating mixing[J]. Optics and Precision Engineering, 2014, 22(4): 904-910. [13] 李以贵, 黄远, 颜平, 等. 利用体块PZT制备膜片式压电微泵[J]. 光学精密工程, 2016, 24(5): 1072-1079. Li Yi-gui, Huang Yuan, Yan Ping, et al. Fabrication of micro diaphragm piezoelectric pump by using bulk PZT[J]. Optics and Precision Engineering, 2016, 24(5): 1072-1079. [14] Ren H W, Wu S T. Variable-focus liquid lens by changing aperture[J]. Appl Phys Lett, 2005, 86(21):211107. [15] Santiago-Alvarado A, González-García J, Itubide- Jiménez F,et al. Simulating the functioning of variable focus length liquid-filled lenses using the finite element method (FEM)[J]. Optik, 2013, 124(11):1003-1010. [16] McDonald J C, Whitesides G M. Poly (dimethylsiloxane) as a material for fabricating microfluidic devices[J]. Accounts Chem Res, 2002, 35(7):491-499. [17] Maki A J, Peltokangas M, Kreutzer J, et al. Modeling carbon dioxide transport in PDMS-based microfluidic cell culture devices[J]. Chem Eng Sci, 2015, 137(1):515-524. [18] Becker H, Gaertner C. Polymer microfabrication technologies for microfluidic systems[J]. Anal Bioanal Chem, 2008, 390(1):89-111. [19] 崔铮.微纳米加工技术及其应用[M].北京:高等教育出版社,2005:187-221. [20] Li S S, Liu X Q, Chau A, et al. A simple magnetic force-based cell patterning method using soft lithography[J]. Sci China Life Sci, 2015, 58(4):400-402. [21] Zhou J, Ellis A V, Voelcker N H. Recent developments in PDMS surface modification for microfluidic devices[J]. Electrophoresis, 2010, 31(1):2-16. [22] Hemmil S, Cauich-Rodríguezc J V, Kreutzer J, et al. Rapid, simple, and cost-effective treatments to achieve long-term hydrophilic PDMS surfaces[J]. Appl Surf Sci, 2012, 258(24):9864-9875. [23] 蒋丹,李松晶,杨平. 收缩管/扩张管型无阀压电微泵的动态特性研究[J]. 工程力学,2011, 28(3):218-223. Jiang Dan, Li Song-jing, Yang Ping. Study on dynamic characteristics of a piezoelectric valve-less nozzle/diffuser micro pump[J]. Engineering Mechanics, 2011, 28(3):218-223. [24] Yang S, He X H, Yuan S Q, et al. A valveless piezoelectric micropump with a Coanda jet element[J]. Sensor Actuat A-Phys, 2015, 230(1):74-82. |
[1] | 姜继海, 葛泽华, 杨晨, 梁海健. 基于微分器的直驱电液伺服系统离散滑模控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1492-1499. |
[2] | 刘建芳, 王记波, 刘国君, 李新波, 梁实海, 杨志刚. 基于PMMA内嵌三维流道的压电驱动微混合器[J]. 吉林大学学报(工学版), 2018, 48(5): 1500-1507. |
[3] | 刘国君, 马祥, 杨志刚, 王聪慧, 吴越, 王腾飞. 集成式三相流脉动微混合芯片[J]. 吉林大学学报(工学版), 2018, 48(4): 1063-1071. |
[4] | 刘祥勇, 李万莉. 包含蓄能器的电液比例控制模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1072-1084. |
[5] | 王佳怡, 刘昕晖, 王昕, 齐海波, 孙晓宇, 王丽. 数字二次元件变量冲击机理及其抑制[J]. 吉林大学学报(工学版), 2017, 47(6): 1775-1781. |
[6] | 闻德生, 王京, 高俊峰, 周聪. 双定子单作用叶片泵闭死容腔的压力特性[J]. 吉林大学学报(工学版), 2017, 47(4): 1094-1101. |
[7] | 刘国君, 张炎炎, 杨旭豪, 李新波, 刘建芳, 杨志刚. 声表面波技术在金纳米粒子可控制备中的应用[J]. 吉林大学学报(工学版), 2017, 47(4): 1102-1108. |
[8] | 王丽, 刘昕晖, 王昕, 陈晋市, 梁燚杰. 装载机数字液压传动系统换挡策略[J]. 吉林大学学报(工学版), 2017, 47(3): 819-826. |
[9] | 李慎龙, 刘树成, 邢庆坤, 张静, 赖宇阳. 基于LBM-LES模拟的离合器摩擦副流致运动效应[J]. 吉林大学学报(工学版), 2017, 47(2): 490-497. |
[10] | 闻德生, 陈帆, 甄新帅, 周聪, 王京, 商旭东. 双定子泵和马达在压力控制回路中的应用[J]. 吉林大学学报(工学版), 2017, 47(2): 504-509. |
[11] | 顾守东, 刘建芳, 杨志刚, 焦晓阳, 江海, 路崧. 压电式锡膏喷射阀特性[J]. 吉林大学学报(工学版), 2017, 47(2): 510-517. |
[12] | 张健, 姜继海, 李艳杰. 锥型节流阀流量特性[J]. 吉林大学学报(工学版), 2016, 46(6): 1900-1905. |
[13] | 吴维, 狄崇峰, 胡纪滨, 苑士华. 基于液压变压器的自适应换向驱动系统[J]. 吉林大学学报(工学版), 2016, 46(6): 1906-1911. |
[14] | 杨华勇, 王双, 张斌, 洪昊岑, 钟麒. 数字液压阀及其阀控系统发展和展望[J]. 吉林大学学报(工学版), 2016, 46(5): 1494-1505. |
[15] | 袁哲, 徐东, 刘春宝, 李雪松, 李世超. 基于热流固耦合过程的液力缓速器叶片强度分析[J]. 吉林大学学报(工学版), 2016, 46(5): 1506-1512. |
|