吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (5): 1500-1507.doi: 10.13229/j.cnki.jdxbgxb20170868

• • 上一篇    下一篇

基于PMMA内嵌三维流道的压电驱动微混合器

刘建芳1, 王记波1, 刘国君1, 李新波2, 梁实海1, 杨志刚1   

  1. 1.吉林大学 机械科学与工程学院,长春 130022;
    2.吉林大学 通信工程学院,长春 130022
  • 收稿日期:2017-08-18 出版日期:2018-09-20 发布日期:2018-12-11
  • 通讯作者: 刘国君(1972-),男,教授,博士.研究方向:压电驱动与控制技术,微流控技术.E-mail:gjliu@jlu.edu.cn
  • 作者简介:刘建芳(1975-),男,教授,博士.研究方向:压电驱动与控制.E-mail:jfliu@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51375207);吉林省自然科学基金项目(20170101136JC)

PMMA micromixer embedded with 3D channel based on piezoelectric actuation

LIU Jian-fang1, WANG Ji-bo1, LIU Guo-jun1, LI Xin-bo2, LIANG Shi-hai1, YANG Zhi-gang1   

  1. 1.College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China;
    2.College of Communication Engineering, Jilin University, Changchun 130022, China
  • Received:2017-08-18 Online:2018-09-20 Published:2018-12-11

摘要: 为改善微尺度下流体的混合效果,提高微混合器的混合效率,设计制造了一种基于PMMA内嵌三维流道的压电驱动微混合器。该微混合器以双腔串联压电泵为驱动源,结合Y型多拐角螺旋式三维流道,基于PMMA封装键合工艺,在一定温度、压力条件下键合而成。应用CAE软件对结构进行了仿真优化设计,优选出最佳结构参数,最终确定外形尺寸为50 mm × 35 mm × 7.2 mm。在实验室内进行了脉动和混合效果实验,实验结果表明:当频率为50 Hz,输出流量约为1 mL/min时,流道内脉动效果明显;压电微泵脉动混合技术和多拐角流道结构促进微流体混合,是一种融合了主、被动混合器特点的新型微混合技术。

关键词: 流体传动与控制, 机械设计, 压电驱动, 三维流道, PMMA键合, 微混合器, 压电微泵

Abstract: To improve the mixing effect of the fluids under micro scale condition and the mixing efficiency of micromixer, a novel PMMA micromixer embedded with 3D channel based piezoelectric actuation was developed. The micromixer uses PZT micropump with double chambers in series as the driving source, and is embedded with Y type mixing channel and 3D multi-corner spiral flow channel. The micromixer is manufactured by PMMA bonding process under certain temperature and pressure condition. The related structural parameters are optimized using the CAE software. The final optimized dimensions are 50 mm × 35 mm × 7.2 mm. The pulsating and mixing effect experiments were carried out in the laboratory. Results show that when the frequency is 50 Hz and the output flow rate is about 1 mL/min, the pulsation effect of mixing fluids is obvious in the flow channel. The pulsation mixing technique and the multi-corner flow channel structure improve the mixing effect, which is a novel micro mixing technology that combines with the characteristics of active and passive micromixers.

Key words: hydraulic transmission and control, mechanical design, piezoelectric actuation, 3D flow channel, PMMA bonding process, micromixer, PZT micropump

中图分类号: 

  • TN384
[1] Dittrich P S, Manz A.Lab-on-a-chip: microfluidics in drug discovery[J]. Nature Reviews Drug Discovery, 2006, 5(3):210-218.
[2] Sista R, Hua Z, Thwar P, et al.Development of a digital microfluidic platform for point of care testing[J].Lab on a Chip, 2008, 8(12):2091-2104.
[3] Boken J,Soni S K,Kumar D.Microfluidic synthesis of nanoparticles and their biosensing applications[J].Critical Reviews in Analytical Chemistry,2016,46(6):538-561.
[4] Fallenius B E G, Sattari A, Fransson J H M,et al. Experimental study on the effect of pulsating inflow to an enclosure for improved mixing[J].International Journal of Heat & Fluid Flow, 2013, 44:108-119.
[5] 赵天,杨志刚,刘建芳,等.利用压电微泵驱动和脉动混合可控合成金纳米粒子[J].光学精密工程, 2014, 22(4):904-910.
Zhao Tian, Yang Zhi-gang, Liu Jian-fang, et al.Controlled synthesis of gold nanoparticles based on PZT micropump and pulsating mixing[J].Optics and Precision Engineering,2014, 22(4):904-910.
[6] Shilton R J, Yeo L Y, Friend J R.Quantification of surface acoustic wave induced chaotic mixing-flows in microfluidic wells[J].Sensors & Actuators B Chemical, 2011, 160(1):1565-1572.
[7] Choi E, Kwon K, Lee S J, et al.Non-equilibrium electrokinetic micromixer with 3D nanochannel networks[J]. Lab on a Chip, 2015, 15(8):1794-1798.
[8] Kamali R, Shekoohi S A, Binesh A.Effects of magnetic particles entrance arrangements on mixing efficiency of a magnetic bead micromixe[J]. Nano-Micro Letters, 2014, 6(1):30-37.
[9] Sadabadi H, Packirisamy M, Wüthrich R.High performance cascaded PDMS micro-mixer based on split-and-recombination flows for lab-on-a-chip applications[J].RSC Advances, 2013, 3(20):7296-7305.
[10] 何秀华, 颜杰, 王岩. 内置周期挡板的T-型微混合器[J].光学精密工程,2015, 23(10):2877-2886.
He Xiu-hua, Yan Jie, Wang Yan.T-shaped micromixer with periodic baffles[J]. Optics and Precision Engineering,2015,23(10): 2877-2886.
[11] 张贺, 刘晓为, 唐佳禄,等.三维阶梯结构微混合器设计、制作及性能分析[J].哈尔滨工业大学学报, 2016, 48(4):54-59.
Zhang He,Liu Xiao-wei, Tang Jia-lu, et al.Design, manufacture and investigation of 3D step structures micromixe[J]. Journal of Harbin Institute of Technology, 2016, 48(4):54-59.
[12] Hong T F, Ju W J, Wu M C, et al.Rapid prototyping of PMMA microfluidic chips utilizing a CO2, lase[J]. Microfluidics and Nanofluidics, 2010, 9(6):1125-1133.
[13] Dy A J, Cosmanescu A, Sluka J, et al.Fabricating microfluidic valve master molds in SU-8 photoresist[J]. Journal of Micro-mechanics & Micro-engineering, 2014, 24(5): 057001.
[14] Zeng P, Li L, Dong J, et al.Structure design and experimental study on single-bimorph double-acting check-valve piezoelectric pump[C]∥ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science. DOI: 10.1177/0954406215596357.
[15] Ren Y J, Ma Y T, Huang D, et al.Elastic string check valves can efficiently heighten the piezoelectric pump’s working frequency[J].Sensors & Actuators A Physical, 2016, 244:126-132.
[16] 曾平, 李立安, 胥锋, 等. 无阀压电泵的流固耦合仿真及试验验证[J]. 光学精密工程, 2016, 24(1): 112-118.
Zeng Ping, Li Li-an, Xu Feng, et al.Structural-fluid coupling simulation and experimental verification on valveless piezoelectric pump[J]. Optics and Precision Engineering, 2016, 24(1): 112-118.
[17] 陈松, 刘勇, 阚君武,等. 微型压电泵中腔高对气泡滞留的影响规律[J]. 光学精密工程, 2017, 25(3): 672-679.
Chen Song, Liu Yong, Kan Jun-wu, et al.Influence of pump-chamber height on bubble retention in piezoelectric micro-pump[J]. Optics and Precision Engineering, 2017, 25(3): 672-679.
[18] Shin S M, Kang I S, Cho Y.Mixing enhancement by using electrokinetic instability under time-periodic electric field[J].Journal of Micro-mechanics & Micro-engineering, 2005, 15(3):455-462.
[19] Beebe D J, Adrian R J, Olsen M G, et al.Passive mixing in microchannels:fabrication and flow experiments[J]. Mécanique & Industries, 2001, 2(4):343-348.
[1] 毕秋实,王国强,黄婷婷,毛瑞,鲁艳鹏. 基于DEM-FEM耦合的双齿辊破碎机辊齿强度分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1770-1776.
[2] 朱伟,王传伟,顾开荣,沈惠平,许可,汪源. 一种新型张拉整体并联机构刚度及动力学分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1777-1786.
[3] 姜继海, 葛泽华, 杨晨, 梁海健. 基于微分器的直驱电液伺服系统离散滑模控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1492-1499.
[4] 毛宇泽, 王黎钦. 鼠笼支撑一体化结构对薄壁球轴承承载性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1508-1514.
[5] 王涛, 伞晓刚, 高世杰, 王惠先, 王晶, 倪迎雪. 光电跟踪转台垂直轴系动态特性[J]. 吉林大学学报(工学版), 2018, 48(4): 1099-1105.
[6] 刘坤, 刘勇, 闫建超, 吉硕, 孙震源, 徐洪伟. 基于体外传感检测的人体站起动力学分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1140-1146.
[7] 刘祥勇, 李万莉. 包含蓄能器的电液比例控制模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1072-1084.
[8] 吉野辰萌, 樊璐璐, 闫磊, 徐涛, 林烨, 郭桂凯. 基于MBNWS算法的假人胸部结构多目标优化设计[J]. 吉林大学学报(工学版), 2018, 48(4): 1133-1139.
[9] 刘国君, 马祥, 杨志刚, 王聪慧, 吴越, 王腾飞. 集成式三相流脉动微混合芯片[J]. 吉林大学学报(工学版), 2018, 48(4): 1063-1071.
[10] 贺继林, 陈毅龙, 吴钪, 赵喻明, 汪志杰, 陈志伟. 起重机卷扬系统能量流动分析及势能回收系统实验[J]. 吉林大学学报(工学版), 2018, 48(4): 1106-1113.
[11] 谢传流, 汤方平, 孙丹丹, 张文鹏, 夏烨, 段小汇. 立式混流泵装置压力脉动的模型试验分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1114-1123.
[12] 孙秀荣, 董世民, 王宏博, 李伟成, 孙亮. 整体抽油杆柱在油管内空间屈曲的多段式仿真模型对比[J]. 吉林大学学报(工学版), 2018, 48(4): 1124-1132.
[13] 刘志峰, 赵代红, 王语莫, 浑连明, 赵永胜, 董湘敏. 重载静压转台承载力与油垫温度场分布的关系[J]. 吉林大学学报(工学版), 2018, 48(3): 773-780.
[14] 曹婧华, 孔繁森, 冉彦中, 宋蕊辰. 基于模糊自适应PID控制的空压机背压控制器设计[J]. 吉林大学学报(工学版), 2018, 48(3): 781-786.
[15] 李锐, 张路阳, 刘琳, 武粤元, 陈世嵬. 基于相似理论的三跨桥梁磁流变隔振[J]. 吉林大学学报(工学版), 2018, 48(3): 787-795.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郭孔辉;王爽;丁海涛;张建伟 . 后悬架非对称式橡胶衬套弹性耦合特性[J]. 吉林大学学报(工学版), 2007, 37(06): 1225 -1228 .
[2] 彭其渊,徐进,郑升宝,邵毅明,邓天民. 隧道洞口路面两种材料交替对行车的影响及交替位置优化[J]. 吉林大学学报(工学版), 2009, 39(06): 1497 -1503 .
[3] 王昕,姜继海. 轮边驱动液压混合动力车辆再生制动控制策略[J]. 吉林大学学报(工学版), 2009, 39(06): 1544 -1549 .
[4] 武剑,董惠娟,张松柏,张广玉. 压电超声换能器初级串联匹配新方法[J]. 吉林大学学报(工学版), 2009, 39(06): 1641 -1645 .
[5] 郑文忠, 万夫雄, 李时光. 用无机胶粘贴CFRP布加固混凝土板火灾后受力性能[J]. 吉林大学学报(工学版), 2010, 40(05): 1244 -1249 .
[6] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[7] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[8] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[9] 朱剑峰, 林逸, 陈潇凯, 施国标. 汽车变速箱壳体结构拓扑优化设计[J]. 吉林大学学报(工学版), 2013, 43(03): 584 -589 .
[10] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .