吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (2): 500-506.doi: 10.13229/j.cnki.jdxbgxb20170238
孟广伟, 李荣佳, 王欣, 周立明, 顾帅
MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai
摘要: 为满足实际工程中对求解压电双材料界面裂纹强度因子方法通用性和有效性的要求,基于压电界面断裂力学推导了压电双材料平面及反平面界面裂纹强度因子显示外推公式,通过力电耦合有限元模拟了裂纹尖端附近的位移场和电场,将裂纹尖端后面的裂纹张开位移和电势跃变代入强度因子显示外推公式,求解压电双材料的界面裂纹强度因子。以含中心裂纹压电双材料板为例,对不同载荷、单元数和加密形式下的强度因子进行了讨论,并与解析解作了对比。数值算例结果表明,本文方法具有计算简单、精度高等优点。
中图分类号:
[1] Govorukha V, Kamlah M, Loboda V, et al. Interface cracks in piezoelectric materials[J]. Smart Materials and Structures, 2016, 25(2): 323-335. [2] Ou Z C. Singularity parameters ε and κ for interface cracks in transversely isotropic piezoelectricbimaterials[J]. International Journal of Fracture, 2003, 119(2): 41-46. [3] Ou Z C, Chen Y H. Near-tip stress fields and intensity factors for an interface crack in metal/piezoelectric bimaterials[J]. International Journal of Engineering Science, 2004, 42(13): 1407-1438. [4] Ou Z C, Chen Y H. Interface crack-tip generalized stress field and stress intensity factors in transversely isotropic piezoelectric bimaterials[J]. Mechanics Research Communications, 2004, 31(4): 421-428. [5] Nishioka T, Shen S, Yu J. Dynamic J integral, separated dynamic J integral and component separation method for dynamic interfacial cracks in piezoelectric bimaterials[J]. International Journal of Fracture, 2003, 122(3/4): 101-130. [6] Hu S, Shen S,Nishioka T. Numerical analysis for a crack in piezoelectric material under impact[J]. International Journal of Solids and Structures, 2007, 44(25): 8457-8492. [7] Shen S,Nishioka T, Kuang Z B. Impact interfacial fracture for piezoelectric ceramic[J]. Mechanics Research Communications, 1999, 26(3): 347-352. [8] Suo Z, Kuo C M, Barnett D M, et al. Fracture mechanics for piezoelectric ceramics[J]. Journal of the Mechanics and Physics of Solids, 1992, 40(4): 739-765. [9] Zhou L M,Meng G W, Li F, et al. A cell-based smoothed XFEM for fracture in piezoelectric materials[J]. Advances in Materials Science and Engineering, 2016, 2016(5): 1-14. [10] Lei J, Zhang C. Time-domain BEM for transient interfacial crack problems in anisotropic piezoelectric bimaterials[J]. International Journal of Fracture, 2012, 174(2): 163-175. [11] Ma P, Su R K L, Feng W J, et al. The extended finite element method with new crack-tip enrichment functions for an interface crack between two dissimilar piezoelectric materials[J]. International Journal for Numerical Methods in Engineering, 2015, 103(2): 94-113. [12] Fang D, Li F, Liu B, et al. Advances in developing electromechanically coupled computational methods for piezoelectrics/ferroelectrics at multiscale[J]. Applied Mechanics Reviews, 2013, 65(6): 060802. [13] Zhao Y F, Zhao M H, Pan E, et al. Analysis of an interfacial crack in a piezoelectric bi-material via the extended Green's functions and displacement discontinuity method[J]. International Journal of Solids and Structures, 2014, 51(6): 1456-1463. [14] Gherrous M, Ferdjani H. Analysis of a Griffith crack at the interface of two piezoelectric materials under anti-plane loading[J]. Continuum Mechanics and Thermodynamics, 2016, 28(6): 1683-1704. [15] Sladek J, Sladek V, Wünsche M, et al. Analysis of an interface crack between two dissimilar piezoelectric solids[J].Engineering Fracture Mechanics, 2012, 89: 114-127. [16] Loboda V, Sheveleva A, Lapusta Y. An electrically conducting interface crack with a contact zone in a piezoelectric bimaterial[J]. International Journal of Solids and Structures, 2014, 51(1): 63-73. [17] Feng F X, Lee K Y, Li Y D. Multiple cracks on the interface between a piezoelectric layer and an orthotropic substrate[J].Acta Mechanica, 2011, 221(3/4): 297-308. [18] Choi S R, Chung I. Analysis of three collinearantiplane interfacial cracks in dissimilar piezoelectric materials under non-self equilibrated electromechanical loadings on a center crack[J]. Journal of Mechanical Science and Technology, 2013, 27(10): 3097-3101.[19]孟广伟,赵云亮,李锋,等.含多裂纹结构的断裂可靠性分析[J].吉林大学学报:工学版, 2008,38(3):614-618. Meng Guang-wei, Zhao Yun-liang, Li Feng, et al. Reliability analysis of structures with multi-crack[J].Journal of Jilin University(Engineering and Technology Edition), 2008,38(3):614-618. [19] 孟广伟,赵云亮,李锋,等.含多裂纹结构的断裂可靠性分析[J].吉林大学学报:工学版, 2008,38(3):614-618. Meng Guang-wei, Zhao Yun-liang, Li Feng, et al.Reliability analysis of structures with multi-crack[J].Journal of Jilin University(Engineering and Technology Edition), 2008,38(3):614-618. [20] 彭惠芬,孟广伟,周立明,等.基于小波有限元法的虚拟裂纹闭合法[J].吉林大学学报:工学版, 2011, 41(5):1364-1368. Peng Hui-fen,Meng Guang-wei, Zhou Li-ming, et al. Virtual crack closure technique based on wavelet finite element method[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(5):1364-1368. |
[1] | 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894. |
[2] | 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903. |
[3] | 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909. |
[4] | 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916. |
[5] | 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924. |
[6] | 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930. |
[7] | 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937. |
[8] | 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944. |
[9] | 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290. |
[10] | 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297. |
[11] | 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951. |
[12] | 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956. |
[13] | 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632. |
[14] | 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639. |
[15] | 于华楠, 杜瑶, 郭树旭. 基于压缩传感的高精度同步相量测量方法[J]. 吉林大学学报(工学版), 2018, 48(1): 312-318. |
|