吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (2): 594-605.doi: 10.13229/j.cnki.jdxbgxb20181003

• 交通运输工程·土木工程 • 上一篇    下一篇

基于分形理论的沥青路面层间机械摩阻强度行为

毛昱(),李萍(),念腾飞,林梅,魏西应   

  1. 兰州理工大学 土木工程学院,兰州 730050
  • 收稿日期:2018-09-30 出版日期:2020-03-01 发布日期:2020-03-08
  • 通讯作者: 李萍 E-mail:137436909@qq.com;lzlgliping@126.com
  • 作者简介:毛昱(1990-),男,博士研究生.研究方向:道路材料.E-mail: 137436909@qq.com
  • 基金资助:
    国家自然科学基金项目(51868047)

Mechanical friction intensity behavior of asphalt pavement based on fractal theory

Yu MAO(),Ping LI(),Teng-fei NIAN,Mei LIN,Xi-ying WEI   

  1. School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
  • Received:2018-09-30 Online:2020-03-01 Published:2020-03-08
  • Contact: Ping LI E-mail:137436909@qq.com;lzlgliping@126.com

摘要:

为沥青路面层间抗剪切设计及施工提供参考,针对现有沥青路面的结构层组合形式,研究了不同级配结构层组合类型沥青路面层间机械摩阻强度。首先,基于分形理论建立沥青路面层间机械摩阻强度理论模型,并分析了不同级配结构层组合形式的沥青路面机械摩阻强度特性;其次,为验证该理论模型的可靠性,进行了不同级配结构层组合类型的沥青路面剪切试验。结果表明:层间接触表面形态受沥青混合料级配影响较大,其中,级配组合类型为AC-13/AC-16的接触面积最大,然后依次为AC-13/AC-20、AC-16/AC-20;在相同荷载作用下,层间机械摩阻强度受上、下层级配结构层组合类型影响较大,级配结构层组合类型为AC-13/AC-20时,层间机械摩阻强度最大,然后依次为AC-16/AC-20、AC-13/AC-16;在温度为20 ℃时,层间机械摩阻强度理论值与试验值较接近,表明在该条件下沥青路面层间机械摩阻强度理论模型具有一定的可靠性与适用性。

关键词: 沥青路面, 分形理论, 接触面积, 抗剪强度, 机械摩阻强度

Abstract:

In order to provide reference for the anti-shear design and construction of asphalt pavement layer, the mechanical frictional strength between layers of asphalt pavements with different grades of structural layers was studied based on the structural layer combination of existing asphalt pavements in this study. Firstly, the theoretical model of mechanical frictional resistance between asphalt pavement layers is established based on the fractal theory, and the mechanical frictional strength characteristics of asphalt pavement with different grading structural layers combinations are analyzed. Furthermore, the shear tests of asphalt pavement with different grading structural layer combinations were carried out in order to verify the reliability of the theoretical model. The results show that the interlayer surface morphology is greatly affected by the gradation of asphalt mixture. Among them, the gradation combination type AC-13/AC-16 has the largest contact area, followed by AC-13/AC-20 and AC-16/AC-20. The mechanical frictional strength between layers is greatly affected by the combination of upper and lower gradation structure layers under the same load, and the gradation structure layer combination type AC-13/AC-20 has the largest interlayer mechanical friction strength, followed by AC-16/AC-20 and AC-13/AC-16. The theoretical value of the mechanical frictional strength among the interlayers is fitting to the experimental value at the temperature of 20 °C, which indicates that the theoretical model of the mechanical frictional strength among the asphalt pavement interlayers has certain reliability and applicability under this condition.

Key words: asphalt pavement, fractal theory, contact area, shear strength, mechanical friction strength

中图分类号: 

  • U414

图1

沥青混合料双对数曲线图"

表1

AC-13沥青混合料级配曲线拟合参数表"

r/mm ln( r/ rmax) H( r) ln H( r)
16.000---
13.200093.604.539
9.500-0.32972.804.288
4.750-1.02254.403.996
2.360-1.72237.203.616
1.180-2.41527.703.321
0.600-3.09118.072.894
0.300-3.78413.382.594
0.150-4.4778.802.175
0.075-5.1706.801.917

表2

AC-16沥青混合料级配曲线拟合参数表"

r/mm ln( r/ rmax) H( r) ln H( r)
16.000093.54.538
13.200-0.19283.84.428
9.500-0.52166.54.197
4.750-1.21447.93.869
2.360-1.91431.33.444
1.180-2.60723.43.153
0.600-3.28317.02.833
0.300-3.97712.82.549
0.150-4.6708.72.163
0.075-5.3635.71.740

表3

AC-20沥青混合料级配曲线拟合参数表"

r/mm ln( r/ rmax) H( r) ln H( r)
26.500---
19.000096.04.564
16.500-0.17285.04.443
13.200-0.36473.54.297
9.500-0.69363.04.143
4.750-1.38642.03.738
2.360-2.08630.03.401
1.180-2.77921.03.045
0.600-3.45514.02.639
0.300-4.14810.52.351
0.150-4.8428.02.079
0.075-5.5356.01.792

表4

不同级配组合类型的沥青路面层间实际接触面积"

级配结构层组合类型剪切试件层间名义接触面积 Aa/m 2有效接触面积占名义接触面积百分比( Ar/ Aa)/% 剪切试件层间有效接触面积 Ar/m 2
AC-13/AC-200.01270.6520.008 48
AC-16/AC-200.01263.5170.007 62
AC-13/AC-160.01274.5830.008 95

表5

沥青路面级配组合设计表"

试件类型上层结构(5 cm)粘层材料下层结构(5 cm)
类型1AC-13无粘层油AC-20
类型2AC-16无粘层油AC-20
类型3AC-13无粘层油AC-16
类型4AC-13乳化沥青AC-20
类型5AC-16乳化沥青AC-20
类型6AC-13乳化沥青AC-16
类型7AC-13基质沥青AC-20
类型8AC-16基质沥青AC-20
类型9AC-13基质沥青AC-16
类型10AC-13SBS改性沥青AC-20
类型11AC-16SBS改性沥青AC-20
类型12AC-13SBS改性沥青AC-16

表6

镇海AH-90沥青技术指标"

试验项目测试结果规范要求
针入度(25 ℃,100 g,5 s)/0.01 mm81.080~100
软化点/℃47.0≥42
延度(15 ℃)/cm112.0≥100
溶解度/%99.7≥99
蜡含量(蒸馏法)%2.1≤3
闪点(开口式)/℃255.0≥245
动力粘度(60 ℃)/(Pa·s)234.6≥160
15 ℃密度/(g·cm -3) 1.12实测

表7

SBS改性沥青技术指标"

试验项目规范要求试验结果
针入度(25 ℃,100 g,5 s)/0.1 mm50~8068
针入度指数PI≥-0.4-0.2
软化点/℃≥7088
动力粘度/135 ℃≤32.5
旋转薄膜加热后残留物质量变化/%-1.0~1.0-0.04
旋转薄膜加热后残留物针入度比/25 ℃≥6078
旋转薄膜加热后残留物延度5 ℃/cm≥1527
弹性恢复(25 ℃)/%≥9096
延度5 ℃,(5 cm/min)/cm≥2036
储存稳定性离析,48 h软化点差/℃≤22
溶解度/%≥9999.7
闪点/℃≥230230
15 ℃的密度/(g·cm -3实测值1.033
25 ℃的相对密度--

表8

乳化沥青技术指标"

试验项目规范要求试验结果
破乳速度慢裂慢裂
粒子电荷阳离子(+)阳离子(+)
筛上残留物(1.18 mm)/%≤0.10.08
恩格拉粘度(25 ℃)/%3~303.38
沥青标准粘度(25 ℃)/%12~6031
5 d常温贮存稳定性/%≤54.4
蒸发残留物残留分含量/%≥6062.8
溶解度(三氯乙烯)/%≥97.598
软化点/℃≥5366
25 ℃针入度/0.1 mm40~10086
5 ℃延度/cm≥2024
1 d常温贮存稳定性/%≤10.2

图2

复合试件切割示意图"

图3

复合试件切割实物图"

图4

沥青路面层间剪切夹具尺寸图"

图5

层间剪切试件装配实物图"

图6

不同温度下沥青路面层间抗剪强度"

图7

沥青路面层间抗剪强度试验值"

图8

沥青路面层间机械摩阻强度理论值与试验值"

1 李盛, 刘朝晖, 李宇峙, 等. 刚柔复合式路面层间界面剪切疲劳试验研究[J]. 土木工程学报, 2013, 46( 7): 151- 156.
Li Sheng, Liu Chao-hui, Li Yu-zhi, et al. Experimental study on interlaminar shear fatigue of rigid-flexible composite pavement[J]. China Civil Engineering Journal, 2013, 46( 7): 151- 156.
2 马培建, 王佳蓉, 王选仓. 基于摩尔-库伦理论的沥青路面层间抗剪强度[J]. 长安大学学报: 自然科学版, 2012, 32( 2): 34- 38.
Ma Pei-jian, Wang Jia-rong, Wang Xuan-cang. Shear strength between interlayers of asphalt pavement based on Mohr-Coulomb theory[J]. Journal of Chang’an University (Natural Science Edition), 2012, 32( 2): 34- 38.
3 念腾飞, 李萍, 林梅. 冻融循环下沥青特征官能团含量与流变参数灰熵分析及微观形貌[J]. 吉林大学学报: 工学版, 2018, 48( 4): 1045- 1054.
Teng-fei Nian, Li Ping, Lin Mei. Micro-morphology and gray entropy analysis of asphalt characteristics functional groups and rheological parameters under freeze-thaw cycles[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48( 4): 1045- 1054.
4 袁峻, 孙立军. 沥青混合料抗剪强度影响因素评价指标研究[J]. 重庆建筑大学学报, 2008, 30( 6): 140- 145.
Yuan Jun, Sun Li-jun. Index of factors influencing the shear strength of asphalt mixtures[J]. Journal of Chongqing Jianzhu University, 2008, 30( 6): 140- 145.
5 贺林, 朱均. 粗糙表面接触分形模型的提出与发展[J]. 摩擦学学报, 1996, 16( 4): 375- 384.
He Lin, Zhu Jun. Fractal model for contact of rough surfaces[J]. Tribology, 1996, 16( 4): 375- 384.
6 彭勇, 孙立军. 基于分形理论沥青混合料均匀性评价方法[J]. 哈尔滨工业大学学报, 2007, 39( 10): 1656- 1659.
Peng Yong, Sun Li-jun. Evaluating asphalt mixture homogeneity based on fractal theory[J]. Journal of harbin Institute of Technology, 2007, 39( 10): 1656- 1659.
7 艾长发. 基于层间接触状态的沥青路面疲劳失效机理与综合评价模型[J]. 学术动态, 2010( 4): 5- 8.
Ai Chang-fa. Fatigue failure mechanism and comprehensive evaluation model of asphalt pavement based on interlayer contact status[J]. Xue Shu Dong Tai, 2010( 4): 5- 8.
8 Laith T, Janson R, Zhang J N. Evaluation tack cock applications and the Bond strength between pavement layers[C]∥ Proceeding of the 2006 Airfield and Highway Pavement Specialty Conference, Atlanta, GA, 2006, 578- 588.
9 Nian T F, Li Pi, Wei X Y, et al. The effect of freeze-thaw cycles on durability properties of SBS-modified bitumen[J]. Construction and Building Materials, 2018, 187: 77- 88.
10 彭勇, 孙立军, 石永久, 等. 沥青混合料抗剪强度的影响因素[J]. 东南大学学报: 自然科学版, 2007, 37( 2): 330- 333.
Peng Yong, Sun Li-jun, Shi Yong-jiu, et al. Influence factors of shear resistance of asphalt mixture[J]. Journal of Southeast University (Natural Science Edition), 2007, 37( 2): 330- 333.
11 傅栋梁, 钱振东. 不同级配类型沥青混合料抗剪性能研究[J]. 重庆建筑大学学报, 2008, 30( 2): 98- 102.
Fu Dong-liang, Qian Zhen-dong. Research on shearing properties of asphalt mixtures composed of different gradation types[J]. Journal of Chongqing Jianzhu University, 2008, 30( 2): 98- 102.
12 艾长发, 肖川, 曾杰, 等. 沥青路面动应变响应及其动荷载作用等效换算[J]. 土木工程学报, 2017, 50( 1): 123- 132.
Ai Chang-fa, Xiao Chuan, Zeng Jie, et al. Dynamic strain response of asphalt pavement and equivalent conversion of load effects[J]. China Civil Engineering Journal, 2017, 50( 1): 123- 132.
13 宿秀丽, 李波, 刘建勋, 等. 密级配沥青混合料矿料分布分形特征[J]. 长安大学学报: 自然科学版, 2011, 31( 2): 12- 16.
Su Xiu-li, Li Bo, Liu Jian-xun, et al. Fractal characteristics of aggregate distribution in dense-gradation asphalt mixture[J]. Journal of Chang’an University (Natural Science Edition), 2011, 31( 2): 12- 16.
14 王维锋, 严新平, 初秀民, 等. 基于分形理论的沥青路面微观形貌特征描述与求解方法[J]. 吉林大学学报: 工学版, 2010, 40( 6): 1538- 1542.
Wang Wei-feng, Yan Xin-ping, Chu Xiu-min, et al. Feature description and its solution of asphalt road pavement micro-topography based on fractal theory[J]. Journal of Jilin University (Engineering and Technology Edition), 2010, 40( 6): 1538- 1542.
15 兰国生, 张学良, 丁红钦, 等. 基于分形理论的结合面静摩擦因数改进模型[J]. 农业机械学报, 2012, 43( 1): 213- 218.
Lan Guo-sheng, Zhang Xue-liang, Ding Hong-qin, et al. Modified model of static friction coefficient of joint interfaces based on fractal theory[J]. Transactions of the Chinese Society for Agricultural, 2012, 43( 1): 213- 218.
16 李志宏, 黄宝涛. 沥青路面层间接触面积临界值的计算方法[J]. 建筑材料学报, 2008, 11( 3): 311- 317.
Li Zhi-hong, Huang Bao-tao. Calculation method for critical value of interlayer contact area of asphalt pavement[J]. Journal of Building Materials, 2008, 11( 3): 311- 317.
17 杨瑞华, 许志鸿, 张超, 等. 沥青混合料分形级配理论[J]. 同济大学学报: 自然科学版, 2008, 36( 12): 1642- 1646.
Yang Rui-hua, Xu Zhi-hong, Zhang Chao, et al. Fractal gradation theory of asphalt mixture[J]. Journal of Tongji University (Natural Science), 2008, 36( 12): 1642- 1646.
18 盛选禹, 雒建斌, 温诗铸. 基于分形接触的静摩擦因数预测[J]. 中国机械工程, 1998, 9( 7): 16- 20.
Sheng Xuan-yu, Yan Jian-bin, Wen Shi-zhu. Static friction factor prediction based on fractal contact[J]. China Mechanical Engineering, 1998, 9( 7): 16- 20.
19 黄宝涛, 廖公云, 张静芳. 半刚性基层沥青路面层间接触临界状态值的计算方法[J]. 东南大学学报: 自然科学版, 2007, 37( 4): 666- 670.
Huang Bao-tao, Liao Gong-yun, Zhang Jing-fang. Analytical method of interlayer contact fettle in Semi-rigid Base bituminous pavement[J]. Journal of Southeast University (Natural Science Edition), 2007, 37( 4): 666- 670.
20 成雨, 原园. 基于分形理论的粗糙表面接触力学模型[J]. 中国科技论文, 2016, 11( 16): 1850- 1854.
Cheng Yu, Yuan Yuan. Contact mechanics model of rough suiface based on fractal theory[J]. China Sciencepaper, 2016, 11( 16): 1850- 1854.
21 魏龙, 刘其和, 张鹏高. 基于分形理论的滑动摩擦表面接触力学模型[J]. 机械工程学报, 2012, 48( 17): 106- 113.
Wei Long, Liu Qi-he, Zhang Peng-gao. Sliding friction surface contact mechanics model based on fractal theory[J]. Journal of Mechanical Engineering, 2012, 48( 17): 106- 113.
22 李萍, 毛昱, 念腾飞, 等. 基于权函数法的沥青路面基-面层裂缝的扩展行为[J]. 北京交通大学学报, 2017, 41( 3): 61- 68.
Li Ping, Mao Yu, Teng-fei Nian, et al. Crack Propagation behavior between base and surface courses of asphalt pavement based on weight function method[J]. Journal of Beijing Jiaotong University, 2017, 41( 3): 61- 68.
23 JTG E20-2011. 公路工程沥青及沥青混合料试验规程( [S].
[1] 张云龙,周刘光,王静,吴春利,吕翔. 冻融对粉砂土力学特性及路堤边坡稳定性的影响[J]. 吉林大学学报(工学版), 2019, 49(5): 1531-1538.
[2] 王静,吕翔,曲肖龙,钟春玲,张云龙. 路基土抗剪强度与化学及矿物成分的关系[J]. 吉林大学学报(工学版), 2019, 49(3): 766-772.
[3] 李伊,刘黎萍,孙立军. 沥青面层不同深度车辙等效温度预估模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1703-1711.
[4] 刘寒冰, 张互助, 王静. 失水干燥对路基压实黏质土抗剪强度特性的影响[J]. 吉林大学学报(工学版), 2017, 47(2): 446-451.
[5] 杨爱武,周金,孔令伟. 固化吹填软土力学特性试验[J]. 吉林大学学报(工学版), 2014, 44(3): 661-667.
[6] 孟繁宇, 潘晓东. 基于神经网络-遗传算法的功能性沥青路面材料优选[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 535-538.
[7] 马彬, 许洪国, 刘宏飞. 路面分形和橡胶特性对轮胎滑动摩擦因数的影响[J]. 吉林大学学报(工学版), 2013, 43(02): 317-322.
[8] 尚涛, 李涛, 刘先黎, 任露泉. 基于分形理论的纤维材料微粒捕集器捕集效率模型[J]. 吉林大学学报(工学版), 2012, 42(02): 397-402.
[9] 谭忆秋, 赵立东, 岳军声, 蓝天云. 沥青路面凝冰损坏程度检测设备[J]. 吉林大学学报(工学版), 2012, 42(01): 57-62.
[10] 王继新, 季景方, 张英爽, 王乃祥, 章二平, 黄建兵. 基于小波分形理论的工程车辆时域载荷信号降噪方法[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 221-225.
[11] 王维锋, 严新平, 初秀民, 谢磊, 马育林. 基于分形理论的沥青路面微观形貌特征描述与求解方法[J]. 吉林大学学报(工学版), 2010, 40(06): 1538-1542.
[12] 赵延庆,谭忆秋,王国忠,王志超. 黏弹性对沥青路面疲劳开裂的影响[J]. 吉林大学学报(工学版), 2010, 40(03): 683-0687.
[13] 乔英娟,陈静云,王哲人,徐光辉 . 考虑沥青混合料泊松比影响的路面结构应力分析
[J]. 吉林大学学报(工学版), 2009, 39(01): 50-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!