吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (1): 188-199.doi: 10.13229/j.cnki.jdxbgxb20190169

• 材料科学与工程 • 上一篇    

双曲率筋条壁板铣削回弹预测

刘纯国1,2(),于晓彤1,2,岳韬1,2,李东来1,2,张明哲1,2   

  1. 1.吉林大学 辊锻工艺研究所,长春 130022
    2.吉林大学 材料科学与工程学院,长春 130022
  • 收稿日期:2019-03-19 出版日期:2021-01-01 发布日期:2021-01-20
  • 作者简介:刘纯国(1970-),男,教授,博士生导师. 研究方向:材料加工工程. E-mail:liucg@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51575231)

Springback prediction for double-curvature stiffened panel during milling

Chun-guo LIU1,2(),Xiao-tong YU1,2,Tao YUE1,2,Dong-lai LI1,2,Ming-zhe ZHANG1,2   

  1. 1.Roll-forging Research Institute,Jilin University,Changchun 130022,China
    2.College of Materials Science and Engineering,Jilin University,Changchun 130022,China
  • Received:2019-03-19 Online:2021-01-01 Published:2021-01-20

摘要:

针对铝合金薄壁零件制造过程中的回弹问题,提出了一种双曲率壁板铣削回弹的预测方法。该方法根据材料逐层去除后板料内部残余应力的重新分布情况,估算板料两个弯曲方向的回弹值。有限元模拟结果表明,铣削过程中板料的应力分布和回弹与计算结果相近;当板料铣削至中性面时,两弯曲方向的应力变化最大;随着剩余板厚的减小,计算结果与模拟结果间的误差逐渐增大。另外,单层铣削厚度与回弹规律的模拟结果表明,单层铣削厚度越大,该方法误差越大,最大误差为9.07%。为验证计算结果,进行了铝合金双曲率板料的成形-铣削实验,结果表明本文方法能够较准确预测双曲率铝合金板料铣削后的回弹。

关键词: 双曲率壁板, 回弹预测, 残余应力, 有限元法

Abstract:

Aiming at the springback problem during manufacturing process of aluminum alloy thin-walled parts, a springback prediction method for double-curvature stiffened panel in milling process was proposed. The method estimates the springback value in the two directions of the panel according to the redistribution of the residual stress after the material is removed layer by layer. The finite element simulation results show that the stress distribution and radius after springback of the panel during the milling process were close to the calculated results. The maximum stress variation in both directions appears when the milling depth reaches the initial neutral surface. When the remaining thickness decreases, the errors between calculation results and FEM results increase gradually. In addition, the simulation results of different single-layer milling thickness show that the larger the thickness of single-layer milling, the larger the error of this method, and the maximum error is 9.07%. The forming-milling experiments were performed to verify the proposed method. The results show that the proposed method could predict the springback of the double-curvature stiffened panel.

Key words: double-curvature panel, springback prediction, residual stress, finite element method(FEM)

中图分类号: 

  • TG386

图1

计算模型示意图"

图2

铝合金筋条壁板示意图"

图3

成形-铣削有限元模型"

图4

成形-铣削实验"

图5

研究点的选取位置"

图6

研究点的各层应力分布"

图7

成形后板料残余应力分布"

图8

铣削后板料σx沿z轴的分布"

图9

铣削后板料σy沿z轴的分布"

图10

铣削回弹路径的选取位置"

图11

铣削回弹曲线"

图12

不同组合弯曲半径下的有限元与计算结果比较"

图13

不同组合弯曲半径下的实验与计算结果比较"

图14

板料去除12 mm后σx沿z轴的分布"

图15

不同单层铣削厚度下壁板的回弹计算结果与有限元结果误差"

图16

不同筋条厚度下的有限元与计算结果比较"

1 曾元松, 黄遐. 大型整体壁板成形技术[J]. 航空学报, 2008, 29(3): 721-727.
Zeng Yuan-song, Huang Xia. Forming technologies of large integral panel[J]. Acta Aeronautica Et Astronautica Sinica, 2008, 29(3): 721-727.
2 董亚男. 铝合金整体板多点冲压成形断裂的预测与控制[D]. 长春:吉林大学材料科学与工程学院, 2016.
Dong Ya-nan. Prediction and control of fracture in multi-point press forming of aluminum alloy integral panel[D]. Changchun: College of Materials Science and Engineering, Jilin University, 2016.
3 刘纯国, 岳韬, 邓玉山, 等. 一种高筋铝合金壁板制造方法[P]. 中国: 201610634093, 2016-10-26.
4 Rossini N S, Dassisti M, Benyounis K Y, et al. Methods of measuring residual stresses in components[J]. Materials & Design, 2012, 35(1): 572-588.
5 Sebastiani M, Eberl C, Bemporad E, et al. Focused ion beam four-slot milling for poisson's ratio and residual stress evaluation at the micron scale[J]. Surface and Coatings Technology, 2014(251): 151-161.
6 Liu C G, Zheng Y, Zhang X G. Investigation of through thickness residual stress distribution and springback in bent AL plate by slotting method[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1-4): 299-308.
7 Meng L, Atli M, He N. Measurement of equivalent residual stresses generated by milling and corresponding deformation prediction[J]. Precision Engineering, 2017, 50: 160-170.
8 Shin S H. Prediction of the dimensional instability resulting from machining of residually stressed components[D]. Lubbock:Texas Tech University, 1995.
9 Wang S, Zuo D, Wang M, et al. Modified layer removal method for measurement of residual stress distribution in thick pre-stretched aluminum plate[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2004, 21(4): 286-290.
10 Sebastian N. A mathematical model for the estimation of the effects of residual stresses in aluminum plates[D]. City of Saint Louis: Washington University in St. Louis, 2005.
11 Yong K A. Machining-induced residual stress and distortion of thin parts[D]. City of Saint Louis: Washington University in St. Louis, 2005.
12 Wu Q, Li D P, Ren L, et al. Detecting milling deformation in 7075 aluminum alloy thin-walled plates using finite difference method[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(5-8): 1291-1302.
13 Wei Y, Wang X W. Computer simulation and experimental study of machining deflection due to original residual stress of aerospace thin-walled parts[J]. The International Journal of Advanced Manufacturing Technology, 2007, 33(3/4): 260-265.
14 Tang Z T, Yu T, Xu L Q, et al. Machining deformation prediction for frame components considering multifactor coupling effects[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(1-4): 187-196.
15 Izamshah R, Mo J P T, Ding S. Hybrid deflection prediction on machining thin-wall monolithic aerospace components[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226(4): 592-605.
16 孙杰, 柯映林. 残余应力对航空整体结构件加工变形的影响分析[J]. 机械工程学报, 2005, 41(2): 117-122.
Sun Jie, Ke Ying-lin. Study on machining distortion of unitization airframe due to residual stress[J]. Chinese Journal of Mechanical Engineering, 2005, 41(2): 117-122.
17 Li W, Ma L, Wan M, et al. Modeling and simulation of machining distortion of pre-bent aluminum alloy plate[J]. Journal of Materials Processing Technology, 2018, 258: 189-199.
18 Gao H, Zhang Y, Wu Q, et al. Investigation on influences of initial residual stress on thin-walled part machining deformation based on a semi-analytical model[J]. Journal of Materials Processing Technology, 2018, 262: 437-448.
19 余同希, 章亮炽. 塑性弯曲理论及其应用[M]. 北京: 科学出版社, 1992.
20 Adibi H, Asadian Ardakani M H, Mollaei Dariani B. Springback analysis of sheet metal laminates after U-bending[C]∥The 19th International Conference on Metallurgy and Materials, Roznov pod Radhostem, Czech Republic, 2010.
21 林胜. HSM在航空制造业中的应用[J].航空制造技术, 2003(3): 25-28, 76.
Lin Sheng. HSM application in aviation manufacturing industry [J]. Aeronautical Manufacturing Technology, 2003(3): 25-28, 76.
22 Li B, Jiang X, Yang J, et al. Effects of depth of cut on the redistribution of residual stress and distortion during the milling of thin-walled part[J]. Journal of Materials Processing Technology, 2015, 216: 223-233.
[1] 鲁金忠,周婉婷,张圣洋,邵亦锴,王长雨,罗开玉. 激光冲击强化层数对6061⁃T6铝合金抗腐蚀性能的影响[J]. 吉林大学学报(工学版), 2019, 49(3): 842-849.
[2] 周晓勤,杨璐,张磊,陈立军. 具有负压缩性的铰接八面体结构的有限元分析[J]. 吉林大学学报(工学版), 2019, 49(3): 865-871.
[3] 刘子武, 李剑峰. 叶片材料FV520B再制造熔覆层冲蚀损伤行为及评价[J]. 吉林大学学报(工学版), 2018, 48(3): 835-844.
[4] 刘程, 史文库, 陈志勇, 何伟, 荣如松, 宋怀兰. 汽车驱动桥准双曲面齿轮齿根弯曲应力预测与试验[J]. 吉林大学学报(工学版), 2017, 47(2): 344-352.
[5] 梁继才, 李义, 高嵩, 滕菲. 型材多点柔性拉弯成形回弹预测[J]. 吉林大学学报(工学版), 2017, 47(1): 185-190.
[6] 闫光, 庄炜, 刘锋, 祝连庆. 具有增敏效果的光纤光栅应变传感器的预紧封装及传感特性[J]. 吉林大学学报(工学版), 2016, 46(5): 1739-1745.
[7] 胡玉明, 黄音, 古海东. 排桩支护结构内力与变形三维有限元数值分析[J]. 吉林大学学报(工学版), 2016, 46(2): 445-450.
[8] 肖湘, 黄恩厚, 尼颖升. 预应力混凝土梁板体系有效翼缘的理论分析及试验[J]. 吉林大学学报(工学版), 2015, 45(6): 1784-1790.
[9] 马彪1, 赵家昕1, 李和言1, 宁克炎2, 何春平3. 离合器结构参数对其热弹性不稳定性的影响[J]. 吉林大学学报(工学版), 2014, 44(4): 933-938.
[10] 李晓军,梁路路,谢诚伟,杨硕. 沥青混凝土虚拟力学仿真模型自动生成及应用[J]. 吉林大学学报(工学版), 2014, 44(3): 655-660.
[11] 彭勇, 孙立军. 集料水平向分布状态对沥青混合料劈裂试验影响数值模拟[J]. 吉林大学学报(工学版), 2013, 43(04): 891-896.
[12] 张强, 张璐, 刘宪军, 于路路, 贾洪雷. 基于有限元法的仿生钩形深松铲耕作阻力[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 117-121.
[13] 邓兆祥, 高书娜. 结构声腔耦合系统的振型耦合特性分析及应用[J]. , 2012, 42(05): 1120-1126.
[14] 闫清东, 崔红伟, 魏巍. 新型液力变矩减速装置变矩工况叶轮有限元强度分析[J]. 吉林大学学报(工学版), 2012, 42(02): 365-371.
[15] 缪宏, 左敦稳, 王珉, 张瑞宏, 汪洪峰. 工艺参数对Q460高强度钢冷挤压内螺纹质量的影响[J]. 吉林大学学报(工学版), 2012, 42(01): 68-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!