吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 344-352.doi: 10.13229/j.cnki.jdxbgxb201702002

• • 上一篇    下一篇

汽车驱动桥准双曲面齿轮齿根弯曲应力预测与试验

刘程1, 史文库1, 陈志勇1, 何伟1, 荣如松2, 宋怀兰2   

  1. 1.吉林大学 汽车仿真与控制国家重点试验室, 长春 130022;
    2.南京依维柯汽车有限公司 车桥分公司,南京210028
  • 收稿日期:2016-03-22 出版日期:2017-03-20 发布日期:2017-03-20
  • 通讯作者: 史文库(1960-),男,教授,博士生导师.研究方向:汽车整车NVH及平顺分析与优化.E-mail:shiwk@jlu.edu.cn
  • 作者简介:刘程(1985-),男,博士研究生.研究方向:汽车传动系统NVH分析与优化.E-mail:liucheng14@mails.jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51205158); 中国博士后科学基金项目(2013M541294).

Experiment on tooth root bending stress of driving axle hypoid gear of automobile

LIU Cheng1, SHI Wen-ku1, CHEN Zhi-yong1, HE Wei1, RONG Ru-song2, SONG Huai-lan2   

  1. 1.State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China;
    2. Axle Branch of Naveco Co., Ltd.,Nanjing 210028,China
  • Received:2016-03-22 Online:2017-03-20 Published:2017-03-20

摘要: 有限元法是预测汽车驱动桥准双曲面齿轮齿根弯曲应力的重要方法,但单独准双曲面齿轮有限元模型约束条件难以确定,为此本文建立了基于整体驱动模型准双曲面齿轮齿根弯曲应力有限元分析模型,并对齿根应力仿真结果与台架试验进行了对比。选用ABAQUS/Standard建立了驱动桥准双曲面齿轮静态啮合模型,仿真结果表明:本文研究的整体驱动桥准双曲面齿轮在啮合过程中小齿轮齿根弯曲应力在靠近大端出现最大值,齿根部位先受到压应力,再受到拉应力;大齿轮齿根弯曲应力在靠近小端出现最大值,齿根部位先受到拉应力,再受到压应力。最后,搭建了驱动桥静扭试验台,并对驱动桥大齿轮齿根弯曲应力进行测量,将台架试验与仿真结果进行了对比分析,对比结果表明,所建立的有限元模型准确可靠,可将此建模方法应用于类似的齿轮齿根弯曲应力分析。

关键词: 车辆工程, 驱动桥, 准双曲面齿轮, 齿根弯曲应力, 有限元法

Abstract: FEM is an important method to predict the tooth root bending stress of driving axle hypoid gear of automobile. However, it is difficult to accurately determine the constraint condition of the FEM model. To solve this problem, a finite element analysis method of hypoid gear tooth root bending stress based on the whole drive axle model is established. Simulation results of obtained from the proposed method are compared with that of rig test. ABAQUS/Standard software is used to establish the static state engagement model of hypoid gears of the driving axle. Results show that, while hypoid gears of the driving axle are meshing, the maximum bending stress of the pinion appears near the heal; the tooth roots bear the comprehensive stress first, then shift to tensile stress. On the contrary, the maximum bending stress of the big gear appears near the toe; the tooth roots bear the tensile stress first, then shift to comprehensive stress. Finally, the gear tooth root bending stress was measured on a driving axle static torsional test rig. Comparison of the test and simulation results demonstrates that the proposed FEM model is reliable and such modeling method can be applied to similar analysis of gear tooth root bending stress.

Key words: vehicle engineering, drive axle, hypoid gear, root bending stress, finite element method

中图分类号: 

  • U463
[1] Hotait M A, Kahraman A. Estimation of bending fatigue life of hypoid gears using a multiaxial fatigue criterion[J]. Journal of Mechanical Design, 2013, 135(8):101005.
[2] 唐进元,彭方进. 准双曲面齿轮动态啮合性能的有限元分析研究[J]. 振动与冲击,2011,30(7):101-106.
Tang Jin-yuan, Peng Fang-jin. Finite element analysis for dynamic meshing a pair of hypoid gear[J].Journal of Vibration and Shock, 2011,30(7):101-106.
[3] Handschuh R F, Bibel G D. Experimental and analytical study of aerospace spiral bevel gear tooth fillet stress[J].Journal of Mechancial Design, 1999,121(4):3085-3095.
[4] Litvin F L, Vecchiato D, Yukishima K, et al. Reduction of noise of loaded and unloaded misaligned gear drives[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(41): 5523-5536.
[5] Simon V V. Deformations and stresses in face-hobbed spiral bevel gears[C]∥Proceedings of the ASME 2011 International Design Engineering Technical Conference & Computers and Information in Engineering Conference,Washington, DC,USA, 2011:81-91.
[6] Aoki T,Kaneta M,Onagi H,et al. A load distribution model for hypoid gears using ease-off topography and shell theory[J].Mechanism and Machine Theory, 2009,44(10):1848-1865.
[7] Jin De-quan, Li Hui-bin, Gu Meng-yin. Modal analysis of driving axle of mini-bus with FEM[C]∥4th International Conference on Materials Engineering for Advanced Technologies,London,UK,2015:476-480.
[8] 郭年程,史文库,刘文军,等. 轻型客车驱动桥振动噪声源分析与改进[J]. 振动测试与诊断,2012,32(4):608-613,690.
Guo Nian-cheng, Shi Wen-ku, Liu Wen-jun, et al.Analysis and optimization of vibration and Nnoise for driving axle of a light bus[J].Journal of Vibration, Measurement & Diagnosis,2012,32(4):608-613,690.
[9] 郭年程,史文库,刘文军,等. 驱动桥的整体有限元动态模拟[J]. 西安交通大学学报,2012,46(9):91-95.
Guo Nian-cheng, Shi Wen-ku, Liu Wen-jun, et al. Dynamic finite element simulation for driving axle[J]. Journal of Xi'an Jiaotong University, 2012,46(9):91-95.
[10] 张军辉,方宗德,王成,等.基于NURBS的弧齿锥齿轮真实齿面的数字化仿真[J].航空动力学报,2009,24(7):1672-1676.
Zhang Jun-hui, Fang Zong-de, Wang Cheng, et al.Digital simulation of spiral bevel gears' real tooth surfaces based on non-uniform rational B-spline[J]. Journal of Aerospace Power, 2009,24(7):1672-1676.
[11] Fan Q.Optimization of face cone element for spiral bevel and hypoid gears[J].Journal of Mechanical Design,2011,133(9) : 091002.
[12] Simon V V.Generation of hypoid gears on CNC hypoid generator[J].Journal of Mechanical Design,2011,133(12): 121003.
[13] Wang P, Zhang Y, Wan M. Global synthesis for face milled spiral bevel gears with zero transmission errors[J]. Journal of Mechanical Design, 2016, 138(3):033302.
[14] Gonzalez-Perez I, Fuentes A, Ruiz-Orzaez R. An approach for determination of basic machine-tool settings from blank data in face-hobbed and face-milled hypoid gears[J]. Journal of Mechanical Design, 2015, 137(9):093303.
[15] 王星,方宗德,李声晋,等. HGT准双曲面齿轮精确建模和加载接触分析[J]. 四川大学学报:工程科学版,2015,47(4):181-185.
Wang Xing, Fang Zong-de, Li Sheng-jin, et al. Precise modeling of HGT hypoid gear and loaded tooth contact analysis[J]. Journal of Sichuan University (Engineering Science Edition), 2015,47(4):181-185.
[16] Litvin F L, Fuentes A. Gear Geometry and Applied Theory[M]. Cambridge: Cambridge University Press, 2004.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!