吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (2): 758-764.doi: 10.13229/j.cnki.jdxbgxb20190265

• 农业工程·仿生工程 • 上一篇    

仿生张拉机械腿及其抗冲击性能仿真分析

钱志辉1(),吴思杰1,2,王强1,周新艳1,吴佳南1,任雷1(),任露泉1   

  1. 1.吉林大学 工程仿生教育部重点实验室, 长春 130022
    2.哈尔滨工业大学 机电工程学院, 哈尔滨 150006
  • 收稿日期:2019-03-21 出版日期:2020-03-01 发布日期:2020-03-08
  • 通讯作者: 任雷 E-mail:zhqian@jlu.edu.cn;lren@jlu.edu.cn
  • 作者简介:钱志辉(1981-),男,教授,博士.研究方向:机械仿生科学与工程.E-mail: zhqian@jlu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2016YFE0103700);国家自然科学基金项目(51675222)

Design of bionic tensegrity leg and simulation analysis of its impact resistance

Zhi-hui QIAN1(),Si-jie WU1,2,Qiang WANG1,Xin-yan ZHOU1,Jia-nan WU1,Lei REN1(),Lu-quan REN1   

  1. 1.Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
    2.College of Electrical and Mechanical Engineering, Harbin Institute of Technology, Harbin 150006, China
  • Received:2019-03-21 Online:2020-03-01 Published:2020-03-08
  • Contact: Lei REN E-mail:zhqian@jlu.edu.cn;lren@jlu.edu.cn

摘要:

针对机器人腿足系统抗冲击性能差的问题,基于生物张拉原理开发了一种仿生张拉机械腿。该机械腿关节间不存在刚性铰接轴,通过添加柔性材料模拟生物关节韧带和筋腱作用。仿真结果表明:相比传统机械腿,仿生张拉机械腿具有更好的抗冲击性能。材料敏感性分析表明,足-地冲击过程中,仿生张拉腿中的柔性构件通过变形有效吸收冲击能量,缓释了冲击作用强度,改善了刚性构件的应力分布状态。研究范围内仿生筋腱材料软硬保持不变,仿生韧带的弹性模量越小,仿生腿的抗冲击、抗弯能力越强;保持仿生韧带软硬一定时,仿生筋腱的弹性模量越大,仿生腿的抗冲击、抗弯能力越佳,进而为机器人腿足系统的创新设计提供了理论依据。

关键词: 工程仿生, 张拉原理, 仿生机械腿, 抗冲击

Abstract:

To solve the problem of poor impact resistance of robot leg and foot system, a bionic tensegrity mechanical leg was developed based on the principle of biological tensegrity. Flexible materials were employed to simulate the biological joint ligament and tendon, instead of using rigid hinge joint. Finite element simulation results show that the bionic tensegrity mechanical leg has better impact resistance than the traditional mechanical leg. The material sensitivity analysis results show that during impact, the flexible member in the bionic tensegrity leg absorbs the impact energy effectively through deformation, reduces the impact strength, and improves the stress distribution state of the rigid member. Within the scope of the study, keeping the elastic modulus of bionic tendon material as constant, the smaller the elastic modulus of the bionic ligament, the stronger the anti-impact and anti-bending resistance of the bionic leg. Similarly, when the bionic ligament is kept constant, the larger the elastic modulus of the bionic tendon, the better the anti-impact and anti-bending resistance of the bionic leg. Furthermore, this project provides important theoretical basis for the innovative design of robot leg-foot system.

Key words: bionic engineering, tensegrity principle, bionic mechanical limb, impact resistance

中图分类号: 

  • TB17

图1

仿生张拉机械腿"

图2

简化的仿生张拉机械腿与传统腿模型"

表1

材料属性"

部件材料弹性模量/MPa泊松比文献
骨骼铝合金70 0000.30[ 20]
仿生韧带LDPE700.45[ 22]
仿生筋腱LDPE1400.45[ 22]

图3

载荷边界条件"

图4

沿不同路径的机械腿部节点应力曲线"

图5

拉/压应力分布"

图6

两类机械腿及其构件的SE曲线"

图7

仿生韧带弹性模量变化对小腿节点应力分布的影响"

图8

仿生筋腱弹性模量变化对小腿节点应力分布的影响"

1 高峰. 机构学研究现状与发展趋势的思考[J]. 机械工程学报, 2005, 41( 8): 3- 17.
Gao Feng. Thoughts on the status quo and development trend of institutional research[J]. Journal of Mechanical Engineering, 2005, 41( 8): 3- 17.
2 陈学东, 郭鸿勋, 渡边桂吾. 四足步行机器人爬行步态的正运动学分析[J]. 机械工程学报, 2003, 39( 2): 8- 12.
Chen Xue-dong, Guo Hong-xun, Duan Gui-wu. Direct kinematics analysis of crawling gait of four-legged walking robot[J]. Journal of Mechanical Engineering, 2003, 39( 2): 8- 12.
3 Pongas D, Mistry M, Schaal S. A robust quadruped walking gait for traversing rough terrain[C]∥ IEEE International Conference on Robotics and Automation, Roma, 2007: 1474- 1479.
4 Raibert M, Blankespoor K, Nelson G, et al. Bigdog, the rough-terrain quadruped robot[J]. IFAC Proceedings Volumes, 2008, 41( 2): 10823- 10825.
5 Dynamics Boston. Cheetah[EB/OL].[ 2018-12-18].
6 Unitree. Laikago[EB/OL].[ 2018-12-30].
7 熊蓉. 仿生腿足式机器人的发展[J]. 机器人技术与应用, 2017( 2): 29- 36.
Xiong Rong. Development of bionic leg-foot robot[J]. Robotics and Applications, 2017( 2): 29- 36.
8 钱志辉, 苗怀彬, 任雷, 等. 基于多种步态的德国牧羊犬下肢关节角[J]. 吉林大学学报: 工学版, 2015, 45( 6): 1857- 1862.
Qian Zhi-hui, Miao Huai-bin, Ren Lei, et al. Lower limb joint angles of German shepherd dog during foot-ground contact in different gait patterns[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45( 6): 1857- 1862.
9 钱志辉, 苗怀彬, 商震, 等. 基于多种步态的德国牧羊犬足-地接触分析[J]. 吉林大学学报: 工学版, 2014, 44( 6): 1692- 1697.
Qian Zhi-hui, Miao Huai-bin, Shang Zheng, et al. Foot-ground contact analysis of German shepherd dog in walking, trotting and jumping gaits[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44( 6): 1692- 1697.
10 Auke J I. Biorobotics: using robots to emulate and investigate agile locomotion[J]. Science, 2014, 346( 6206): 196- 203.
11 Seok S, Wang A, Meng C Y, et al. Design principles for energy-efficient legged locomotion and implementation on the MIT cheetah robot[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20( 3): 1117- 1129.
12 丁良宏. Bigdog四足机器人关键技术分析[J]. 机械工程学报, 2015, 51( 7): 1- 23.
Ding Liang-hong. Key technologies of bigdog quadruped robot[J]. Journal of Mechanical Engineering, 2015, 51( 7): 1- 23.
13 Wolf S, Hirzinger G. A new variable stiffness design: Matching requirements of the next robot generation[C]∥ IEEE International Conference on Robotics and Automation, Pasadena, 2008: 1741- 1746.
14 Seok S, Wang A, Meng C M Y, et al. Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot[C]∥ IEEE International Conference on Robotics and Automation, Germany, 2013: 3307- 3312.
15 Hutter M, Gehring C, Bloesch M, et al. “Starleth”: a compliant quadrupedal robot for fast, efficient and versatile locomotion[C]∥ 15th International Conference on Climbing Walking Robots and the Support Technologies for Mobile Machines, Baltimore, 2012: 483- 490.
16 Folkertsma S K G, Stramigioli S. Parallel stiffness in a bounding quadruped with flexible spine[C]∥ IEEE/RSJ International Conference on Intelligent Robots and Systems, Portugal, 2012: 2210- 2215.
17 Haberland M, Karssen J, Kim S, et al. The effect of swing leg retraction on running energy efficiency[C]∥ IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, 2011: 3957- 3962.
18 Ren L, Qian Z, Ren L. Biomechanics of musculoskeletal system and its biomimetic implications: a review[J]. Journal of Bionic Engineering, 2014, 11( 2): 159- 175.
19 Levin S M. The tensegrity-truss as a model for spine mechanics: biotensegrity[J]. Journal of Mechanics in Medicine and Biology, 2012, 2( 3/4): 375- 378.
20 Bai R X, Jiang H, Lei Z K, et al. Virtual field method for identifying elastic-plastic constitutive parameters of aluminum alloy laser welding considering kinematic hardening[J]. Optics and Lasers in Engineering, 2018, 110: 122- 131.
21 Ristaniemi A, Stenroth L, Mikkonen S, et al. Comparison of elastic, viscoelastic and failure tensile material properties of knee ligaments and patellar tendon[J]. Journal of Biomechanics, 2018, 79: 31- 38.
22 梁基照. 微珠填充LDPE复合物拉伸弹性模量的预测[J]. 塑料, 1997, 26( 6): 17- 20.
Liang Ji-zhao. Prediction of tensile elastic modulus of LDPE complex filled with microbeads[J]. Plastics, 1997, 26( 6): 17- 20.
[1] 刘春宝,陈山石,盛闯,钱志辉,任露泉,任雷. 蜘蛛生物液压驱动原理及其功能仿生探索[J]. 吉林大学学报(工学版), 2020, 50(1): 375-381.
[2] 陈东良,臧睿,段鹏,赵伟鹏,翁旭涛,孙杨,唐艺鹏. 基于新月鱼尾推进理论的多连杆鱼骨仿生设计[J]. 吉林大学学报(工学版), 2019, 49(4): 1246-1257.
[3] 吴娜,庄健,张克松,王慧鑫,马云海. 毛蚶贝壳曲面承压力学特性及断裂机理[J]. 吉林大学学报(工学版), 2019, 49(3): 897-902.
[4] 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798.
[5] 熙鹏,丛茜,王庆波,郭华曦. 仿生条纹形磨辊磨损试验及耐磨机理分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1787-1792.
[6] 田为军, 王骥月, 李明, 张兴旺, 张勇, 丛茜. 面向水上机器人的水黾运动观测[J]. 吉林大学学报(工学版), 2018, 48(3): 812-820.
[7] 钱志辉, 周亮, 任雷, 任露泉. 具有仿生距下关节和跖趾关节的完全被动步行机[J]. 吉林大学学报(工学版), 2018, 48(1): 205-211.
[8] 黄晗, 李建桥, 陈百超, 吴宝广, 邹猛. 着陆器足垫冲击特性模型试验[J]. 吉林大学学报(工学版), 2017, 47(4): 1194-1200.
[9] 陈东辉, 刘伟, 吕建华, 常志勇, 吴婷, 慕海锋. 基于虾夷扇贝体表结构的玉米茬根捡拾器仿生设计[J]. 吉林大学学报(工学版), 2017, 47(4): 1185-1193.
[10] 田丽梅, 王养俊, 李子源, 商延赓. 仿生功能表面内流减阻测试系统的研制[J]. 吉林大学学报(工学版), 2017, 47(4): 1179-1184.
[11] 王颖, 李建桥, 张广权, 黄晗, 邹猛. 基于多种介质的仿生步行足力学特性[J]. 吉林大学学报(工学版), 2017, 47(2): 546-551.
[12] 葛长江, 叶辉, 胡兴军, 于征磊. 鸮翼后缘噪声的预测及控制[J]. 吉林大学学报(工学版), 2016, 46(6): 1981-1986.
[13] 李梦, 苏义脑, 孙友宏, 高科. 高胎体仿生异型齿孕镶金刚石钻头[J]. 吉林大学学报(工学版), 2016, 46(5): 1540-1545.
[14] 梁云虹, 任露泉. 自然生境及其仿生学初探[J]. 吉林大学学报(工学版), 2016, 46(5): 1746-1756.
[15] 梁云虹, 任露泉. 人类生活及其仿生学初探[J]. 吉林大学学报(工学版), 2016, 46(4): 1373-1384.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!