吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (3): 812-820.doi: 10.13229/j.cnki.jdxbgxb20170456
田为军1, 王骥月1, 李明1, 张兴旺2, 张勇3, 丛茜1,4
TIAN Wei-jun1, WANG Ji-yue1, LI Ming1, ZHANG Xing-wang2, ZHANG Yong3, CONG Qian1,4
摘要: 为了研究水黾水上运动时各腿的运动功能特性,采用高速摄像机记录未处理腿、去除前腿、中腿和后腿时水黾的水上运动,并对水黾的纸上运动进行观察。计算水黾各腿的关节角度,探讨水黾各腿在其运动过程中所承担的具体功能。水上直线运动结果表明:水黾前腿与水接触以维持身体平衡;中腿摆动划水,提供前进动力;后腿与水接触,为躯干提供支撑力,并反复开合,配合前腿维持身体平衡,同时配合中腿减少前进阻力。水黾在纸上直线运动时,为减小阻力,以跳跃方式前进,前腿与后腿维持起落平衡,中腿摆动提供动力。部分腿缺失后的水黾,可通过剩余腿的协同代偿调整来实现稳定运动。
中图分类号:
[1] Gao Xue-feng, Jiang Lei.Biophysics:water-repellent legs of water striders[J]. Nature,2004,432(7013):36. [2] Wang Qing-cheng, Yang Xiao-dong, Yang Zhuo-juan.Research on micro and nano structure and wettability for water strider's leg, abdomen, back and wing[J]. Applied Mechanics & Materials,2013,459:547-550. [3] 张兴旺. 水黾腿润湿性及水黾运动特性研究[D]. 长春:吉林大学生物与农业工程学院,2014. Zhang Xing-wang.Research on wettability of leg and motion characteristic of water strider[D]. Changchun:College of Biological and Agricultural Engineering, Jilin University,2014. [4] 王庆成. 超疏水生物水面超大承载机制及其仿生研究[D]. 长春:长春理工大学机电工程学院,2012. Wang Qing-cheng.The Mechanism of the super-supporting force of super-hydrophobic biological and its bionic research[D]. Changchun: College of Mechanical and Electric Engineering, Changchun University of Science and Technology,2012. [5] Bush J W M,Hu D L,Prakash M. The integument of water-walking arthropods: form and function[J]. Advances in Insect Physiology,2007,34(147):117-192. [6] 田为军,张兴旺,王骥月,等. 水黾多腿并排表面的疏水性能[J]. 高等学校化学学报,2014,35(8):1726-1730. Tian Wei-jun,Zhang Xing-wang,Wang Ji-yue,et al.Surface properties of hydrophobic side by side water strider legs[J]. Chemical Journal of Chinese Universities,2014,35(8):1726-1730. [7] Hu D L,Bush J W M. The hydrodynamics of water-walking arthropods[J]. Journal of Fluid Mechanics,2010,644:5-33. [8] Yabe T,Chinda K,Hiraishi T.Computation of surface tension and contact angle and its application to water strider[J]. Computers & Fluids,2007,36(1):184-190. [9] Zheng J,Yu K,Zhang J,et al.Modeling of the propulsion hydrodynamics for the water strider locomotion on water surface[J]. Procedia Engineering,2015,126:280-284. [10] Goodwyn P J P,Wang J,Wang Z,et al. Water striders: the biomechanics of water locomotion and functional morphology of the hydrophobic surface (insecta: hemiptera-heteroptera)[J]. Journal of Bionic Engineering,2008,5(2):121-126. [11] Takewaki H, Yabe T.The cubic-interpolated pseudo particle (CIP) method: application to nonlinear and multi-dimensional hyperbolic equations[J]. Journal of Computational Physics,1987,70(2):355-372. [12] Takonobu H,Kodaira K,Takeda H.Water strider's muscle arrangement-based robot[C]∥2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB,Canada,2005:1754-1759. [13] Suhr S H,Song Y S,Lee S J,et al.Biologically inspired miniature water strider robot[C]∥Robotics: Science and Systems I,Cambridge, Massachusetts,USA,2005:319-326. [14] Wu L, Yang G, Gui X.Developing strategy based on discussing of the state of the art for a new water strider robot[C]∥2012 Second International Conference on Intelligent System Design and Engineering Application, Sanya,China,2012:674-678. [15] 何冲. 仿水黾机器人建模及运动特性研究[D]. 天津:河北工业大学机械工程学院,2013. He Chong.Modeling and kinematics research on water strider robot[D]. Tianjin:School of Mechanical Engineering, Hebei University of Technology,2013. [16] 王涛. 仿生水黾水面跳跃机器人的研究[D]. 哈尔滨:哈尔滨工业大学机电工程学院, 2015. Wang Tao.Research on water jumping robot inspired by water strider[D]. Harbin:School of Mechatronics Engineering, Harbin Institute of Technology,2015. [17] Song Y S, Sitti M.Surface-tension-driven biologically inspired water strider robots: theory and experiments[J]. IEEE Transactions on Robotics,2007,23(3):578-589. [18] Bai Fan,Wu Jun-tao,Gong Guang-ming,et al.Biomimetic “water strider leg” with highly refined nanogroove structure and remarkable water-repellent performance[J]. ACS Applied Materials & Interfaces,2014,6(18): 16237-16242. [19] Hu D L, Chan B, Bush J W M. The hydrodynamics of water strider locomotion[J]. Nature,2003,424(6949):663-666. [20] Yan J H,Zhang X B,Zhao J,et al.A miniature surface tension-driven robot using spatially elliptical moving legs to mimic a water strider's locomotion[J]. Bioinspiration & Biomimetics,2015,10(4):046016. [21] Zhang X,Yan J,Zhao J,et al.A miniature surface tension-driven robot mimicking the water-surface locomotion of water strider[C]∥2015 IEEE International Conference on Robotics and Automation(ICRA),Seattle,Washington,USA,2015:3172-3177. [22] Zhang X,Zhao J,Zhu Q,et al.Bioinspired aquatic microrobot capable of walking on water surface like a water strider[J]. ACS Applied Materials & Interfaces,2011,3(7):2630-2636. [23] Koh J S, Yang E, Jung G P, et al.Biomechanics. Jumping on water: surface tension-dominated jumping of water striders and robotic insects[J]. Science,2015,349(6247):517-521. [24] Hughes G M.The co-ordination of insect movements. II. The effect of limb amputation and the cutting of commissures in the cockroach (blatta orientalis)[J]. Journal of Experimental Biology,1957,34(3):306. [25] Wilson D M.Insect walking[J]. Entomology,1966,11(11):103-122. [26] Delcomyn F.Perturbation of the motor system in freely walking cockroaches. I. Rear leg amputation and the timing of motor activity in leg muscles[J]. Journal of Experimental Biology,1991,156(3):483-502. [27] Delcomyn F.Perturbation of the motor system in freely walking cockroaches. II. The timing of motor activity in leg muscles after amputation of a middle leg[J]. Journal of Experimental Biology,1991,156(3):503-517. [28] Delcomyn F.The effect of limb amputation on locomotion in the cockroach periplaneta americana[J]. Journal of Experimental Biology,1971,54(2):453-469. [29] Zhang Yan,Huang He,Liu Xiang-yang,et al.Kinematics of terrestrial locomotion in mole cricket gryllotalpa orientalis[J]. Journal of Bionic Engineering,2011,8(2):151-157. [30] Zhang Yan,Zhang Jun-xia,Ren Lu-quan.The terrestrial locomotion of a mole cricket with foreleg amputation[J]. Science China Technological Sciences,2015,58(6):999-1006. |
[1] | 熙鹏,丛茜,王庆波,郭华曦. 仿生条纹形磨辊磨损试验及耐磨机理分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1787-1792. |
[2] | 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798. |
[3] | 钱志辉, 周亮, 任雷, 任露泉. 具有仿生距下关节和跖趾关节的完全被动步行机[J]. 吉林大学学报(工学版), 2018, 48(1): 205-211. |
[4] | 田丽梅, 王养俊, 李子源, 商延赓. 仿生功能表面内流减阻测试系统的研制[J]. 吉林大学学报(工学版), 2017, 47(4): 1179-1184. |
[5] | 陈东辉, 刘伟, 吕建华, 常志勇, 吴婷, 慕海锋. 基于虾夷扇贝体表结构的玉米茬根捡拾器仿生设计[J]. 吉林大学学报(工学版), 2017, 47(4): 1185-1193. |
[6] | 王颖, 李建桥, 张广权, 黄晗, 邹猛. 基于多种介质的仿生步行足力学特性[J]. 吉林大学学报(工学版), 2017, 47(2): 546-551. |
[7] | 葛长江, 叶辉, 胡兴军, 于征磊. 鸮翼后缘噪声的预测及控制[J]. 吉林大学学报(工学版), 2016, 46(6): 1981-1986. |
[8] | 李梦, 苏义脑, 孙友宏, 高科. 高胎体仿生异型齿孕镶金刚石钻头[J]. 吉林大学学报(工学版), 2016, 46(5): 1540-1545. |
[9] | 梁云虹, 任露泉. 自然生境及其仿生学初探[J]. 吉林大学学报(工学版), 2016, 46(5): 1746-1756. |
[10] | 梁云虹, 任露泉. 人类生活及其仿生学初探[J]. 吉林大学学报(工学版), 2016, 46(4): 1373-1384. |
[11] | 钱志辉, 苗怀彬, 任雷, 任露泉. 基于多种步态的德国牧羊犬下肢关节角[J]. 吉林大学学报(工学版), 2015, 45(6): 1857-1862. |
[12] | 邹猛, 于用军, 张荣荣, 魏灿刚, 王会霞. 仿牛角结构薄壁管吸能特性仿真分析[J]. 吉林大学学报(工学版), 2015, 45(6): 1863-1868. |
[13] | 杨卓娟, 王庆成, 高英, 门玉琢, 杨晓东. 不同溶液对荷叶润湿性能的影响[J]. 吉林大学学报(工学版), 2015, 45(6): 1869-1873. |
[14] | 田为军, 王骥月, 李明, 陈思远, 刘方圆, 丛茜. 小型水平轴风力机叶片仿生设计[J]. 吉林大学学报(工学版), 2015, 45(5): 1495-1501. |
[15] | 田桂中, 刘之岭, 周宏根, 宋江超, 朱涛. 家蚕前部丝腺准静态轴向拉伸力学特性[J]. 吉林大学学报(工学版), 2015, 45(3): 872-877. |
|