吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (1): 63-71.doi: 10.13229/j.cnki.jdxbgxb20190912

• 车辆工程·机械工程 • 上一篇    下一篇

多轮混合动力驱动无人驾驶框架车整车控制器开发

曾小华1(),李晓建1,杜劭峰2(),马涛2,王振伟1,宋大凤1   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春 130022
    2.内蒙古第一机械集团有限公司 特种车辆及其传动系统智能制造国家重点实验室,内蒙古 包头 014030
  • 收稿日期:2019-09-23 出版日期:2021-01-01 发布日期:2021-01-20
  • 通讯作者: 杜劭峰 E-mail:zeng.xiaohua@126.com;dushaofeng8611@126.com
  • 作者简介:曾小华(1977-),男,教授,博士生导师. 研究方向:新能源汽车关键技术.E-mail:zeng.xiaohua@126.com
  • 基金资助:
    国家重点研发计划项目(2018YFB0105900)

Development of vehicle controller for multi-wheel hybrid-driven unmanned frame vehicle

Xiao-hua ZENG1(),Xiao-jian LI1,Shao-feng DU2(),Tao MA2,Zhen-wei WANG1,Da-feng SONG1   

  1. 1.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
    2.State Key Laboratory of Smart Manufacturing for Special Vehicles and Transmission System,Inner Mongolia First Machinery Group Corporation,Baotou 014030,China
  • Received:2019-09-23 Online:2021-01-01 Published:2021-01-20
  • Contact: Shao-feng DU E-mail:zeng.xiaohua@126.com;dushaofeng8611@126.com

摘要:

针对多轮分布式混合动力驱动无人驾驶框架车(MHUFV)的功能特点,开发整车控制系统,包括基于双动力源协调的高压上下电管理,考虑多控制节点复杂系统的故障诊断与容错控制,以及双输入模式驾驶员指令判定、防滑控制、模式切换和能量分配控制算法的设计。在此基础上,构建MHUFV软件架构,利用快速控制原型(RCP)技术平台,开发整车控制器,并对整车基本性能进行实车测试。结果表明,开发的整车控制器能够满足实车设计需求,在满载极限车速15 km/h时各关键状态量测试结果合理,且在同一运行工况下相比于传统柴油车节油效果达到38%,可以满足当前框架车行业的开发需求。

关键词: 整车控制器, 多轮分布式, 无人驾驶, 框架运输车

Abstract:

According to the functional characteristics of Multi-wheel distributed hybrid-driven unmanned frame vehicle (MHUFV), the vehicle control system is developed. This system includes high-voltage power-on and power-off management based on the coordination of two power sources, fault diagnosis and fault-tolerant control of complex systems with multiple control nodes, and the algorithm design like driver input command determination with dual input mode, anti-skid control, mode switching and energy distribution control. On this basis, the MHUFV software architecture is constructed, and the vehicle controller is developed by using the Rapid Control Prototype (RCP) technology platform. The basic performance of the vehicle is studied by real road test. The results show that the developed vehicle controller can meet the design requirements of the real vehicle, the test results of each key state quantity are reasonable when the full load limit speed is 15 km/h, and the fuel saving effect is 38% compared with the traditional diesel vehicle under the same operating condition, which can meet the development requirements of the current frame car industry.

Key words: vehicle controller, multi-wheel distributed, driverless, frame transport vehicle

中图分类号: 

  • U469.79

图1

MHUFV动力系统构型"

图2

MHUFV系统高压电子电气架构"

图3

MHUFV系统高压上下电流程图"

图4

“信号-部件”故障等级映射图"

图5

“部件-系统”故障等级映射图"

表1

系统容错处理"

系统故障

等级

故障等级

描述

容错控制概述
0系统正常/
1报警故障报警并记录,车辆维持运行,本次任务结束后,通知维修,重新启动检查。
2降功率车辆限功率运行,减速停车,卸载框架,然后降功率行驶至维修地点,停车检查。
3停车停车故障,高压电可维持;清空走行电机转矩,保持液压电机运行,使车辆具备转向和制动能力。
4停车停车故障,高压电不可维持,此时液压电机无法保持运行,车辆紧急停止,所有电机动力清除。

图6

驾驶员操作模式判定"

表2

七个典型路面相关参数"

路面C1C2C3Soptμmax
干沥青1.28123.9930.5200.1701.171
干水泥1.19625.1660.5390.1601.092
湿沥青大1.02729.4940.4420.1430.950
湿沥青中0.85633.8210.3450.1310.800
湿沥青小0.62833.7650.2000.1100.600
积雪0.19594.1290.0650.0650.190
冰路0.050306.3900.0010.0300.050

图7

MHUFV模式切换情况"

表3

典型模式下的能量分配"

工作模式发动机输出功率驱动电机输出转矩
停车发电Pe=Pchg0
纯电动0TMot=Tcmd/8
发动机启动0TMot=Tcmd/8
发动机工作Pe=Pcmd+PchgTMot=Tcmd/8
跛行Pe=Pcmd·ndown+PchgTMot=Tcmd/(8-nerr)
紧急制动00

图8

MHUFV整车控制策略基本架构"

图9

整车控制器实物图"

图10

MeCa标定与测量界面图"

图11

MHUFV整车实物图"

图12

钻框架曲线"

图13

动力性测试车速曲线"

图14

动力性测试加速踏板与电机转矩变化曲线"

图15

动力性测试电池参数变化曲线"

图16

发电机需求与实际功率曲线"

表4

MHUFV能耗分析统计表"

参 数数 值
仿真初始(终止)SOC/%0.772(0.772)
百公里综合油耗/[(L·(100 km)-1]168
发动机效率/%40.3
驱动电机平均效率/%52
液压电机平均效率/%65
1 刘银. 纯电动物流车整车控制器的研究与开发[D].济南: 山东大学能源与动力工程学院, 2018.
Liu Yin. Research and development of vehicle controller for pure electric logistics vehicles[D]. Jinan: School of Energy and Power Engineering, Shandong University, 2018.
2 Zhu Zhong-wen, Wang Xu, Huang Wei, et al. The development of an advanced vehicle control platform for pure electric vehicles[C]∥SAE Paper, 2015-01-0229.
3 Wang H, Yuwen Z, Fang Y, et al. Development of pure electric vehicle powertrain controller based on hardware in the loop platform[C]∥The 6th IEEE International Conference on Software Engineering and Service Science(ICSESS), Beijing, China, 2015: 522-526.
4 蔡潇扬, 鲍宁, 袁所贤. 基于Simulink的电动客车整车控制器软件层设计[J]. 重庆理工大学学报:自然科学, 2018, 32(6): 14-20.
Cai Xiao-yang, Bao Ning, Yuan Sou-xian. Design of software layer of the vehicle controller in the passenger car based on simulink[J]. Journal of Chongqing University of Technology(Natural Science), 2018, 32(6): 14-20.
5 吕建龙, 张兴起, 程济秋, 等. 某新能源物流车整车控制策略[J].汽车工程师, 2019(7): 15-18.
Jian-long Lü, Zhang Xing-qi, Cheng Ji-qiu, et al. The vehicle control strategy of a new energy logistics vehicle[J]. Automotive Engineer, 2019(7): 15-18.
6 郑潮雄. 低速纯电动汽车整车控制器的研究与开发 [D]. 长沙: 湖南大学机械与运载工程学院, 2016.
Zheng Chao-xiong. Research and development of vehicle controller for low-speed pure electric vehicles [D]. Changsha: College of Mechanical and Transportation Engineering, Hunan University, 2016.
7 武启平, 金亚萍, 任平, 等. 自动导引车(AGV)关键技术现状及其发展趋势[J]. 制造业自动化, 2013, 35(10): 106-109, 121.
Wu Qi-ping, Jin Ya-ping, Ren Ping, et al. Present situation and developing trend of AGV key technology[J]. Manufacturing Automation, 2013, 35(10): 106-109, 121.
8 吕川. 基于PLC的全向移动机器人控制系统设计 [D]. 合肥: 合肥工业大学机械工程学院, 2015.
Chuan Lyu. Design of omnidirectional mobile robot control system based on PLC[D]. Hefei: College of Mechanical Engineering, Hefei University of Technology, 2015.
9 郭文涛. 轮毂电机电动汽车驱动防滑控制研究[D]. 锦州: 辽宁工业大学汽车与交通工程学院, 2016.
Guo Wen-tao. Research on anti-skid control of wheel motor electric vehicle[D]. Jinzhou: School of Automobile and Traffic Engineering, Liaoning University of Technology, 2016.
10 胡斐,赵治国,孙泽昌. 混合动力城市客车整车控制系统的开发[J]. 汽车工程, 2012, 36(4): 283-287.
Hu Fei, Zhao Zhi-guo, Sun Ze-chang. Development of vehicle control system for hybrid city bus[J]. Automotive Engineering, 2012, 36(4): 283-287.
11 席利贺. 增程式电动汽车能量管理策略优化及增程器控制系统研究[D]. 北京: 北京交通大学机械与电子控制工程学院, 2018.
Xi Li-he. Optimization of energy management strategy and research on control system of extender for EVs[D]. Beijing: School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, 2018.
12 朱敏晔, 赵治国, 萧蕴诗. 基于MPC555的HEV控制系统开发[J]. 华东交通大学学报, 2007, 24(4): 101-103.
Zhu Min-ye, Zhao Zhi-guo, Xiao Yun-shi. The application of RTW in the development of HEV control system based on MPC555[J]. Journal of East China Jiaotong University, 2007, 24(4): 101-103.
13 刘永恒. 纯电动客车整车控制器硬件在环仿真测试及标定系统开发[D]. 长春: 吉林大学仪器科学与电气工程学院, 2014.
Liu Yong-heng. Development of hardware in the loop simulation test and calibration system for complete vehicle controller of pure electric bus[D]. Changchun: College of Instrument Science and Electrical Engineering, Jilin University, 2014.
[1] 徐谦,李颖,王刚. 基于深度学习的行人和车辆检测[J]. 吉林大学学报(工学版), 2019, 49(5): 1661-1667.
[2] 杨顺,蒋渊德,吴坚,刘海贞. 基于多类型传感数据的自动驾驶深度强化学习方法[J]. 吉林大学学报(工学版), 2019, 49(4): 1026-1033.
[3] 孙浩, 邓伟文, 张素民, 吴梦勋. 考虑全局最优性的汽车微观动态轨迹规划[J]. 吉林大学学报(工学版), 2014, 44(4): 918-924.
[4] 孙立宁, 穆春阳, 杜志江, 陈燕春. 基于V+v开发模型研制双轴并联混合动力客车整车控制器[J]. 吉林大学学报(工学版), 2009, 39(04): 1012-1018.
[5] 赵一兵,王荣本,李琳辉,郭烈 . 基于D-S证据理论的障碍目标身份识别[J]. 吉林大学学报(工学版), 2008, 38(06): 1295-1299.
[6] 李悦, 周儒荣, 周同礼. 涡轮阻尼器的试验研究[J]. 吉林大学学报(工学版), 2003, (1): 64-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!