吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (1): 49-62.doi: 10.13229/j.cnki.jdxbgxb20190906

• 车辆工程·机械工程 • 上一篇    下一篇

柴油发动机燃烧过程数据驱动建模与滚动优化控制

胡云峰1,2(),丁一桐2,赵志欣3,蒋冰晶2,高金武1,2()   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春 130022
    2.吉林大学 通信工程学院,长春 130022
    3.长春师范大学 数学学院,长春 130032
  • 收稿日期:2019-09-23 出版日期:2021-01-01 发布日期:2021-01-20
  • 通讯作者: 高金武 E-mail:huyf@jlu.edu.cn;gaojw@jlu.edu.cn
  • 作者简介:胡云峰(1983-),男,教授,博士.研究方向:发动机建模与优化控制.E-mail:huyf@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(U1864201);吉林省科技厅自然科学基金项目(20180101037JC);吉林省教育厅科学技术研究项目(JJKH20180144KJ);吉林大学省校共建项目(SXGJSF2017-2-1-1)

Data-driven modeling and receding optimization control of diesel engine combustion process

Yun-feng HU1,2(),Yi-tong DING2,Zhi-xin ZHAO3,Bing-jing JIANG2,Jin-wu GAO1,2()   

  1. 1.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
    2.College of Communication Engineering,Jilin University,Changchun 130022,China
    3.School of Mathematics,Changchun Normal University,Changchun 130032,China
  • Received:2019-09-23 Online:2021-01-01 Published:2021-01-20
  • Contact: Jin-wu GAO E-mail:huyf@jlu.edu.cn;gaojw@jlu.edu.cn

摘要:

针对柴油发动机燃烧过程复杂、机理建模难、动力学耦合且存在约束等问题,以降低燃油消耗率和扭矩跟踪为目标、以氮氧化物排放及控制量限制为约束,提出了柴油发动机燃烧过程数据驱动建模与滚动优化控制方法。首先,以商用发动机模拟软件GT-suite中的一款2 L排量的柴油发动机为被控对象,分析了VGT和EGR控制阀开度、喷油角度和喷油量这4个因素对燃油消耗率、氮氧化物排放以及曲轴输出扭矩的影响;其次,利用输入和输出数据,采用子空间辨识方法得出了面向控制的预测模型;然后,以降低燃油消耗率、扭矩跟踪误差为目标,以氮氧化物排放及控制量限制为约束,通过对优化问题的在线优化求解,得到了最优的控制输入;最后,运用MATLAB与GT-suite联合仿真,验证了数据驱动滚动优化控制方法的有效性和优越性。

关键词: 动力机械工程, 柴油发动机, 子空间辨识, 数据驱动, 滚动优化控制

Abstract:

Aiming at the problems of diesel engine combustion process complexity, mechanism modeling difficulty, dynamic coupling and constraints, a data-driven modeling and rolling optimization control method for diesel engine combustion process was proposed to reduce fuel consumption and torque tracking, and to limit NOx emission and control volume. First, a 2L diesel engine model in GT-suite is chose as a plant. The influences of VGT and EGR control valve opening, injection angle and injection amount on fuel consumption rate, NOx emission and crankshaft output torque are analyzed. Second, using input and output data, a control-oriented data-driven prediction model is obtained by using subspace identification method. Third, to reduce the fuel consumption rate and torque tracking error, and the NOx emission and control input are considered as constraint, the optimal control input is obtained by solving a multi-objective optimal control problem. Finally, the co-simulation based on MATLAB and GT-suite is presented to verify the effectiveness and superiority of the data-driven receding optimization control method.

Key words: power machinery engineering, diesel engine, subspace identification, data-driven, receding optimization control

中图分类号: 

  • TK411

图1

GT-suite中2 L的柴油机模型"

图2

动力学分析输入数据"

图3

动力学分析输出数据"

图4

数据驱动滚动优化算法"

图5

模型验证输入数据"

图6

模型验证结果对比"

图7

模型验证误差曲线"

图8

ETC工况下的发动机转速"

图9

ETC工况下的扭矩"

图10

控制输入(城市工况)"

图11

系统输出(城市工况)"

图12

扭矩跟踪误差对比"

图13

控制输入(乡村工况)"

图14

系统输出(乡村工况)"

图15

扭矩跟踪误差对比"

图16

控制输入(高速公路工况)"

图17

系统输出(高速公路工况)"

图18

扭矩跟踪误差对比"

1 宫洵, 蒋冰晶, 胡云峰, 等. 柴油机主-从双微元Urea-SCR系统非线性状态观测器设计与分析[J]. 吉林大学学报:工学版, 2018, 48(4): 1055-1062.
Gong Xun, Jiang Bing-jing, Hu Yun-feng, et al. Design and analysis of nonlinear state observer for master-slave two cell Urea-SCR system of diesel engine[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(4): 1055-1062.
2 唐蛟, 李国祥, 王志坚, 等. 基于欧Ⅵ柴油机EGR阀与VGT阀解耦控制策略研究[J]. 内燃机工程, 2015, 36(3): 63-67.
Tang Jiao, Li Guo-xiang, Wang Zhi-jian, et al. Study of EGR/VGT decoupling control strategy based on euroⅥ diesel engines[J]. Chinese Internal Combustion Engine Engineering, 2015, 36(3): 63-67.
3 Hong S, Park I, Chung J, et al. Gain scheduled controller of EGR and VGT systems with a model-based gain scheduling strategy for diesel engines[J]. IFAC- Papers On Line, 2015, 48(15): 109-116.
4 祖象欢, 杨传雷, 王贺春, 等. 船用柴油机EGR性能评估及应用研究[J]. 吉林大学学报:工学版,2019, 49(3): 805-815.
Zu Xiang-huan, Yang Chuan-lei, Wang He-chun, et al. Research on EGR performance evaluation of marine diesel engine and its application[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3): 805-815.
5 Najafi B, Akbarian E, Lashkarpour S M, et al. Modeling of a dual fueled diesel engine operated by a novel fuel containing glycerol triacetate additive and biodiesel using artificial neural network tuned by genetic algorithm to reduce engine emissions[J]. Energy, 2019, 168: 1128-1137.
6 Gogoi T K, Baruah D C. A cycle simulation model for predicting the performance of a diesel engine fuelled by diesel and biodiesel blends[J]. Energy, 2010, 35(3): 1317-1323.
7 Bougrine S, Richard S, Michel J B, et al. Simulation of CO and NO emissions in a SI engine using a 0D coherent flame model coupled with a tabulated chemistry approach[J]. Applied Energy, 2014, 113: 1199-1215.
8 Maroteaux F, Saad C. Diesel engine combustion modeling for hardware in the loop applications: Effects of ignition delay time model[J]. Energy, 2013, 57: 641-652.
9 龚英利. 基于EGR和低温燃烧概念的柴油机燃烧过程研究[D]. 天津:天津大学机械工程学院, 2009.
Gong Ying-li. The investigation on combustion process of diesel engine based on the concept on EGR and LTC[D]. Tianjin: School of Mechanical Engineering, Tianjin University, 2009.
10 张全长. 柴油机低温燃烧基础理论和燃烧控制策略的试验研究[D]. 天津: 天津大学机械工程学院, 2010.
Zhang Quan-chang. Experimental study on combustion fundamental theory and control strategy of diesel Low-Temperature Combustion[D]. Tianjin: School of Mechanical Engineering, Tianjin University, 2010.
11 Hong S, Park I, Chung J, et al. Gain scheduled controller of EGR and VGT systems with a model-based gain scheduling strategy for diesel engines[J]. IFAC-Papers OnLine, 2015, 48(15): 109-116.
12 Bridjesh P, Periyasamy P, Mallikarjuna M V. Selecting optimal combination of operating parameters of diesel engine using analytic hierarchy process[J]. Materials Today: Proceedings, 2017, 4(8): 7457-7466.
13 Nishio Y, Murata Y, Yamaya Y, et al. Optimal calibration scheme for map-based control of diesel engines[J]. Science China Information Sciences, 2018, 61(7): 68-81.
14 Costa M, Bianchi G M, Forte C, et al. A numerical methodology for the multi-objective optimization of the DI diesel engine combustion[J]. Energy Procedia, 2014, 45: 711-720.
15 Deb M, Banerjee R, Majumder A, et al. Multi objective optimization of performance parameters of a single cylinder diesel engine with hydrogen as a dual fuel using pareto-based genetic algorithm[J]. International Journal of Hydrogen Energy, 2014, 39(15): 8063-8077.
16 Tanner F X, Srinivasan S. CFD-based optimization of fuel injection strategies in a diesel engine using an adaptive gradient method[J]. Applied Mathematical Modelling, 2009, 33(3): 1366-1385.
17 Lino P, Maione B, Rizzo A. Nonlinear modelling and control of a common rail injection system for diesel engines[J]. Applied Mathematical Modelling, 2007, 31(9): 1770-1784.
18 马朝臣, 郭林福, 施新, 等. VGT对柴油机排放性能影响的试验研究[J]. 北京理工大学学报, 2004, 24(10): 849-853.
Ma Chao-chen, Guo Lin-fu, Shi Xin, et al. Influence of variable geometry turbocharging to the emission of diesel engine[J]. Journal of Beijing Institute of Technology, 2004, 24(10): 849-853.
19 李幼凤, 苏宏业, 褚健. 子空间模型辨识方法综述[J]. 化工学报, 2006, 57(3): 473-479.
Li You-feng, Su Hong-ye, Chu Jian. Overview on subspace model identification methods[J]. Journal of Chemical Industry and Engineering(China), 2006, 57(3): 473-479.
20 侯忠生, 许建新. 数据驱动控制理论及方法的回顾和展望[J]. 自动化学报, 2009, 35(6): 650-667.
Hou Zhong-sheng, Xu Jian-xin. On data-driven control theory: the state of the art and persprctive[J]. Acta Automatica Sinica, 2009, 35(6): 650-667.
21 蒋冰晶. 基于数据驱动的柴油机燃烧过程建模及控制[D]. 长春:吉林大学通信工程学院, 2018.
Jiang Bing-jing. Data-driven based diesel engine combustion procress modeling and control[D]. Changchun: College of Communication Engineering, Jilin University, 2018.
22 范亚南. 基于数据驱动的发动机空燃比预测控制[D]. 长春:吉林大学通信工程学院, 2014.
Fan Ya-nan. Data-driven based engine air-fuel ratio predictive control[D]. Changchun: College of Communication Engineering, Jilin University, 2014.
23 陈虹. 模型预测控制[M]. 北京:科学出版社,2013.
24 车胜新. 解析重型汽车、发动机污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段)标准[J]. 机械工业标准化与质量, 2005(12): 30-31.
Che Sheng-xin. Analyse to the discharge of pollutants from heavy-duty vehicles and engine(China Ⅲ phase, Ⅳ, Ⅴ)[J]. Mechanical Industry Standardization and Quality, 2005(12): 30-31.
[1] 王忠,李游,张美娟,刘帅,李瑞娜,赵怀北. 柴油机排气阶段颗粒碰撞过程动力学特征分析[J]. 吉林大学学报(工学版), 2021, 51(1): 39-48.
[2] 王建,许鑫,顾晗,张多军,刘胜吉. 基于排气热管理的柴油机氧化催化器升温特性[J]. 吉林大学学报(工学版), 2020, 50(2): 408-416.
[3] 宋昌庆,陈文淼,李君,曲大为,崔昊. 不同当量比下单双点火对天然气燃烧特性的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1929-1935.
[4] 朱一骁,何小民,金义. 联焰板宽度对单凹腔驻涡燃烧室流线形态的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1936-1944.
[5] 刘长铖,刘忠长,田径,许允,杨泽宇. 重型增压柴油机燃烧过程中的缸内㶲损失[J]. 吉林大学学报(工学版), 2019, 49(6): 1911-1919.
[6] 胡潇宇,李国祥,白书战,孙柯,李思远. 考虑加热面粗糙度和材料的沸腾换热修正模型[J]. 吉林大学学报(工学版), 2019, 49(6): 1945-1950.
[7] 王德军,吕志超,王启明,张建瑞,丁建楠. 基于EKF及调制傅式级数的缸压辨识[J]. 吉林大学学报(工学版), 2019, 49(4): 1174-1185.
[8] 臧鹏飞,王哲,高洋,孙晨乐. 直线电机/发动机系统稳态运行综合控制策略[J]. 吉林大学学报(工学版), 2019, 49(3): 798-804.
[9] 董伟,宋佰达,邱立涛,孙昊天,孙平,蒲超杰. 直喷汽油机暖机过程中两次喷射比例对燃烧和排放的影响[J]. 吉林大学学报(工学版), 2018, 48(6): 1755-1761.
[10] 李志军, 汪昊, 何丽, 曹丽娟, 张玉池, 赵新顺. 催化型微粒捕集器碳烟分布及其影响因素[J]. 吉林大学学报(工学版), 2018, 48(5): 1466-1474.
[11] 林学东, 江涛, 许涛, 李德刚, 郭亮. 高压共轨柴油机起动工况高压泵控制策略[J]. 吉林大学学报(工学版), 2018, 48(5): 1436-1443.
[12] 秦静, 徐鹤, 裴毅强, 左子农, 卢莉莉. 初始温度和初始压力对甲烷-甲醇裂解气预混层流燃烧特性的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1475-1482.
[13] 宫洵, 蒋冰晶, 胡云峰, 曲婷, 陈虹. 柴油机主-从双微元Urea-SCR系统非线性状态观测器设计与分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1055-1062.
[14] 席雷, 徐亮, 高建民, 赵振, 王明森. 厚壁矩形带肋通道内蒸汽流动及传热特性[J]. 吉林大学学报(工学版), 2018, 48(3): 752-759.
[15] 钟兵, 洪伟, 金兆辉, 苏岩, 解方喜, 张富伟. 进气门早关液压可变气门机构运动特性[J]. 吉林大学学报(工学版), 2018, 48(3): 727-734.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!